[hotfix] Suport extra_kwargs in ShardConfig (#5031)

* [refactor]: replace inference args with extra_kwargs in ShardConfig

* modify shardconfig

* polish code

* fix policy bug in llama

* fix bug in auto policy

* remove setattr in ShardConfig
pull/4836/head^2
Zhongkai Zhao 2023-11-10 10:49:50 +08:00 committed by GitHub
parent 576a2f7b10
commit 70885d707d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 98 additions and 77 deletions

View File

@ -67,7 +67,9 @@ class Worker:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path, pad_token_id=self.tokenizer.pad_token_id, torch_dtype=torch.float16
)
shard_config = ShardConfig(enable_tensor_parallelism=True if world_size > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if world_size > 1 else False, extra_kwargs={"inference_only": True}
)
self.infer_engine = TPInferEngine(
self.model, shard_config, self.max_batch_size, self.max_input_len, self.max_output_len
)

View File

@ -45,8 +45,7 @@ class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
def module_policy(self):
policy = super().module_policy()
if self.shard_config.inference_gptq:
if self.shard_config.extra_kwargs.get("inference_gptq", False):
from colossalai.inference.quant.gptq.cai_gptq import ColCaiQuantLinear, RowCaiQuantLinear
decoder_attribute_replacement = {

View File

@ -44,7 +44,7 @@ class TPInferEngine:
>>> # define model and shard config for your inference
>>> model = ...
>>> generate_kwargs = ...
>>> shard_config = ShardConfig(enable_tensor_parallelism=True, inference_only=True)
>>> shard_config = ShardConfig(enable_tensor_parallelism=True, extra_kwargs={"inference_only": True})
>>> infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
>>> outputs = infer_engine.generate(input_ids, **generate_kwargs)
"""
@ -181,7 +181,7 @@ class TPInferEngine:
In further generation, use the sharded model instead of original model.
"""
# NOTE we will change to use an inference config later with additional attrs we want
assert self.shard_config.inference_only is True
assert self.shard_config.extra_kwargs["inference_only"] is True
shardformer = ShardFormer(shard_config=self.shard_config)
self._prepare_with_shard_config(shard_config=self.shard_config)
self._shard_model_by(shardformer, model)
@ -203,10 +203,10 @@ class TPInferEngine:
enable_all_optimization=False,
enable_flash_attention=False,
enable_jit_fused=False,
inference_only=True,
extra_kwargs={"inference_only": True},
)
else:
shard_config.inference_only = True
shard_config.extra_kwargs = {"inference_only": True}
shard_config.pipeline_stage_manager = None
if shard_config.enable_tensor_parallelism:
self.tp_size = shard_config.tensor_parallel_size
@ -221,13 +221,11 @@ class TPInferEngine:
), "Discrepancy between the tp size of TPInferEngine and the tp size of shard config"
model_name = model.__class__.__name__
assert model_name in self.supported_models, f"Unsupported model cls {model_name} for TP inference."
model = model.model if self.shard_config.inference_gptq else model
if self.shard_config.extra_kwargs.get("inference_gptq", False):
model = model.model
policy = get_autopolicy(model, shard_config=self.shard_config)
self.model, _ = shardformer.optimize(model, policy)
if self.shard_config.inference_gptq:
if self.shard_config.extra_kwargs.get("inference_gptq", False):
self._post_init_gptq_buffer(self.model)
self.model = self.model.cuda()

View File

@ -4,7 +4,6 @@ import torch
from torch.nn import LayerNorm
import colossalai.shardformer.layer as col_nn
from colossalai.shardformer.modeling.bloom import build_bloom_alibi_tensor_fn
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
from colossalai.shardformer.policies.bloom import BloomForCausalLMPolicy
@ -38,35 +37,39 @@ class BloomModelInferPolicy(BloomForCausalLMPolicy):
from transformers.models.bloom.modeling_bloom import BloomAttention, BloomBlock, BloomForCausalLM, BloomModel
policy = super().module_policy()
if self.shard_config.inference_gptq:
if self.shard_config.extra_kwargs.get("inference_gptq", False):
from colossalai.inference.quant.gptq.cai_gptq import ColCaiQuantLinear, RowCaiQuantLinear
policy[BloomBlock] = ModulePolicyDescription(attribute_replacement={
"self_attention.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attention.split_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attention.num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attention.query_key_value",
target_module=ColCaiQuantLinear,
kwargs={'split_num': 3}),
SubModuleReplacementDescription(
suffix="self_attention.dense",
target_module=RowCaiQuantLinear,
kwargs={'split_num': 1}),
SubModuleReplacementDescription(
suffix="self_attention.attention_dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="mlp.dense_h_to_4h",
target_module=ColCaiQuantLinear,
kwargs={'split_num': 1}),
SubModuleReplacementDescription(
suffix="mlp.dense_4h_to_h",
target_module=RowCaiQuantLinear,
kwargs={'split_num': 1}),
])
policy[BloomBlock] = ModulePolicyDescription(
attribute_replacement={
"self_attention.hidden_size": self.model.config.hidden_size
// self.shard_config.tensor_parallel_size,
"self_attention.split_size": self.model.config.hidden_size
// self.shard_config.tensor_parallel_size,
"self_attention.num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attention.query_key_value",
target_module=ColCaiQuantLinear,
kwargs={"split_num": 3},
),
SubModuleReplacementDescription(
suffix="self_attention.dense", target_module=RowCaiQuantLinear, kwargs={"split_num": 1}
),
SubModuleReplacementDescription(
suffix="self_attention.attention_dropout",
target_module=col_nn.DropoutForParallelInput,
),
SubModuleReplacementDescription(
suffix="mlp.dense_h_to_4h", target_module=ColCaiQuantLinear, kwargs={"split_num": 1}
),
SubModuleReplacementDescription(
suffix="mlp.dense_4h_to_h", target_module=RowCaiQuantLinear, kwargs={"split_num": 1}
),
],
)
# NOTE set inference mode to shard config
self.shard_config._infer()

View File

@ -13,6 +13,7 @@ from ..modeling.llama import LlamaInferenceForwards
try:
from lightllm.models.llama.triton_kernel.rmsnorm import rmsnorm_forward as lightllm_rmsnorm_forward
HAS_TRITON_RMSNORM = True
except:
print("you should install triton from https://github.com/openai/triton")
@ -21,6 +22,7 @@ except:
def get_triton_rmsnorm_forward():
if HAS_TRITON_RMSNORM:
def _triton_rmsnorm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor):
return lightllm_rmsnorm_forward(hidden_states, self.weight.data, self.variance_epsilon)
@ -36,7 +38,7 @@ class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
def module_policy(self):
policy = super().module_policy()
if self.shard_config.inference_gptq:
if self.shard_config.extra_kwargs.get("inference_gptq", False):
from colossalai.inference.quant.gptq.cai_gptq import ColCaiQuantLinear, RowCaiQuantLinear
decoder_attribute_replacement = {

View File

@ -81,8 +81,6 @@ Following are the description `ShardConfig`'s arguments:
- `enable_all_optimization`: Whether to turn on all optimization tools including `fused normalizaion`, `flash attention`, `JIT fused operators`, `sequence parallelism` and `sequence overlap`. Defaults to False.
- `inference_only`: Whether only doing forward passing. Defaults to False.
### Write your own policy
If you have a custom model, you can also use Shardformer to parallelize it by writing your own sharding policy. More information about the sharding policy can be found in [API Design](#-api-design).
@ -185,7 +183,6 @@ class ShardConfig:
# Some possible future config fields
tensor_parallel_mode: Choice['1d', '2d', '2.5d', '3d'] # support different tensor parallel mode
inference_only: bool # only inject inference-suitable sharding policy
use_flash_attention: bool # whether to use flash attention to speed up attention
```

View File

@ -209,7 +209,8 @@ def get_autopolicy(model: nn.Module, shard_config: ShardConfig = None) -> Policy
:class:`Policy`: The auto policy for the model
"""
full_name = _fullname(model)
if shard_config.inference_only:
inference_only = shard_config.extra_kwargs.get("inference_only", False)
if inference_only:
policy_location = _INFER_POLICY_LIST.get(full_name, None)
else:
policy_location = _POLICY_LIST.get(full_name, None)
@ -219,5 +220,5 @@ def get_autopolicy(model: nn.Module, shard_config: ShardConfig = None) -> Policy
f"Auto policy for {model.__class__.__qualname__} is not implemented\n. Supported models are {list(_POLICY_LIST.keys())} and {list(_INFER_POLICY_LIST.keys())}"
)
else:
policy = import_policy(policy_location, shard_config.inference_only)
policy = import_policy(policy_location, inference_only)
return policy()

View File

@ -1,5 +1,5 @@
from dataclasses import dataclass
from typing import Optional
from dataclasses import dataclass, field
from typing import Dict, Optional
import torch.distributed as dist
from torch.distributed import ProcessGroup
@ -24,7 +24,6 @@ class ShardConfig:
enable_sequence_parallelism (bool): Whether to turn on sequence parallelism, which partitions non-tensor-parallel regions along the sequence dimension. Defaults to False.
enable_sequence_overlap (bool): Whether to turn on sequence overlap, wheich overlap the computation and communication in sequence parallelism. It can only be used when enable_sequence_parallelism is True. Defaults to False.
enable_all_optimization (bool): Whether to turn on all optimization tools including 'fused normalizaion', 'flash attention', 'JIT fused operators', 'sequence parallelism' and 'sequence overlap'. Defaults to False.
inference_only (bool): Whether only doing forward passing. Defaults to False.
"""
tensor_parallel_process_group: Optional[ProcessGroup] = None
pipeline_stage_manager: Optional[PipelineStageManager] = None
@ -33,10 +32,9 @@ class ShardConfig:
enable_flash_attention: bool = False
enable_jit_fused: bool = False
enable_all_optimization: bool = False
inference_only: bool = False
inference_gptq: bool = False
enable_sequence_parallelism: bool = False
enable_sequence_overlap: bool = False
extra_kwargs: Dict[str, bool] = field(default_factory=dict)
# pipeline_parallel_size: int
# data_parallel_size: int
# tensor_parallel_mode: Literal['1d', '2d', '2.5d', '3d']
@ -77,4 +75,3 @@ class ShardConfig:
Set default params for inference.
"""
# assert self.pipeline_stage_manager is None, "pipeline parallelism is not supported in inference for now"
pass

View File

@ -28,7 +28,9 @@ def bench_bloom(args):
# init TPInferEngine and shard the original model
# To benchmark torch original, comment out the line of optimizing model
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
# prepare data for generation

View File

@ -30,7 +30,9 @@ def run_chatglm2_test(args):
model = model.half()
model.config
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=1, do_sample=False)

View File

@ -30,7 +30,9 @@ def run_llama_test(args):
model = model.half()
model.config
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=1, do_sample=False)

View File

@ -34,7 +34,9 @@ def bench_bloom(args):
model = model.half()
model_config = model.config
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
@ -46,7 +48,8 @@ def bench_bloom(args):
# init TPInferEngine and shard the original model
# To benchmark torch original, comment out the line of optimizing model
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True, inference_gptq=True
enable_tensor_parallelism=True if args.tp_size > 1 else False,
extra_kwargs={"inference_only": True, "inference_gptq": True},
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)

View File

@ -33,7 +33,8 @@ def run_llama_test(args):
model_config = model.config
shard_config = ShardConfig(
enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True, inference_gptq=True
enable_tensor_parallelism=True if args.tp_size > 1 else False,
extra_kwargs={"inference_only": True, "inference_gptq": True},
)
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)

View File

@ -68,7 +68,9 @@ class Worker:
self.model_path, pad_token_id=self.tokenizer.pad_token_id, torch_dtype=torch.float16
)
shard_config = ShardConfig(enable_tensor_parallelism=True if world_size > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if world_size > 1 else False, extra_kwargs={"inference_only": True}
)
self.infer_engine = TPInferEngine(
self.model, shard_config, self.max_batch_size, self.max_input_len, self.max_output_len
)

View File

@ -100,7 +100,9 @@ class ColossalInferenceHandler(BaseHandler, ABC):
colossalai.launch(config={}, rank=rank, world_size=world_size, host=host, port=port, backend="nccl")
logger.info("Initializing TPInferEngine ...")
shard_config = ShardConfig(enable_tensor_parallelism=True if self.tp_size > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if self.tp_size > 1 else False, extra_kwargs={"inference_only": True}
)
self.infer_engine = TPInferEngine(
self.model, shard_config, self.max_batch_size, self.max_input_len, self.max_output_len
)

View File

@ -19,7 +19,7 @@ def build_model(
enable_tensor_parallelism=enable_tensor_parallelism,
enable_flash_attention=enable_flash_attention,
enable_jit_fused=enable_jit_fused,
inference_only=True,
extra_kwargs={"inference_only": True},
)
model_copy = copy.deepcopy(org_model)
shard_former = ShardFormer(shard_config=shard_config)

View File

@ -11,11 +11,10 @@ from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
try:
import lightllm
HAS_LIGHTLLM_KERNEL = True
except:
HAS_LIGHTLLM_KERNEL = False
TP_SIZE = 2
MAX_BATCH_SIZE = 4
MAX_INPUT_LEN = 16
@ -38,7 +37,7 @@ def run(test_config):
model = model.half()
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)
@ -58,7 +57,10 @@ def check_bloom(rank, world_size, port):
run()
@pytest.mark.skipif(not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.skipif(
not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL,
reason="kv-cache manager engine requires cuda version to be higher than 11.5",
)
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()

View File

@ -49,7 +49,7 @@ def run_chatglm2_test(test_config):
model = model.half()
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)

View File

@ -34,7 +34,7 @@ def run():
model = LlamaForCausalLM(llama_config)
model = model.half()
shard_config = ShardConfig(enable_tensor_parallelism=False, inference_only=True)
shard_config = ShardConfig(enable_tensor_parallelism=False, extra_kwargs={"inference_only": True})
infer_engine = TPInferEngine(model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
dynamic_batch_manager = DynamicBatchManager(

View File

@ -57,7 +57,9 @@ def run():
model = LlamaForCausalLM(llama_config)
model = model.half()
shard_config = ShardConfig(enable_tensor_parallelism=True if TP_SIZE > 1 else False, inference_only=True)
shard_config = ShardConfig(
enable_tensor_parallelism=True if TP_SIZE > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
batch_manager = start_dynamic_batching(arg, tp_engine=infer_engine, waiting_req_list=waiting_list)

View File

@ -36,7 +36,7 @@ def run(test_config):
# 1. check TPInferEngine init and model optimization
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)

View File

@ -13,11 +13,10 @@ from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
try:
import lightllm
HAS_LIGHTLLM_KERNEL = True
except:
HAS_LIGHTLLM_KERNEL = False
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
TPSIZE = 2
BATCH_SIZE = 8
@ -43,7 +42,7 @@ def run_llama_test(test_config):
model = model.half()
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)
@ -63,7 +62,10 @@ def check_llama(rank, world_size, port):
run_llama_test()
@pytest.mark.skipif(not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.skipif(
not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL,
reason="kv-cache manager engine requires cuda version to be higher than 11.5",
)
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()

View File

@ -13,7 +13,6 @@ from colossalai.shardformer import ShardConfig
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
try:
import lightllm
HAS_LIGHTLLM_KERNEL = True
except:
HAS_LIGHTLLM_KERNEL = False
@ -41,7 +40,7 @@ def run_llama_test(test_config):
model = model.half()
shard_config = ShardConfig(
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, inference_only=True
enable_tensor_parallelism=True if test_config["tp_size"] > 1 else False, extra_kwargs={"inference_only": True}
)
infer_engine = TPInferEngine(model, shard_config, BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
generate_kwargs = dict(max_new_tokens=MAX_OUTPUT_LEN, do_sample=False)
@ -61,7 +60,10 @@ def check_llama(rank, world_size, port):
run_llama_test()
@pytest.mark.skipif(not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.skipif(
not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL,
reason="kv-cache manager engine requires cuda version to be higher than 11.5",
)
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()