mirror of https://github.com/hpcaitech/ColossalAI
[fx] support meta tracing for aten level computation graphs like functorch. (#1536)
* [fx] support meta tracing for aten level computation graphs like functorch. * [fx] support meta tracing for aten level computation graphs like functorch. * [fx] remove redundant import. * [fx] add docstring.pull/1532/head
parent
521078ffc9
commit
70129603aa
|
@ -1,4 +1,9 @@
|
|||
try:
|
||||
from ._meta_registrations import *
|
||||
except:
|
||||
import torch
|
||||
print(f'_meta_registrations seems to be incompatible with PyTorch {torch.__version__}.')
|
||||
from .initialize import (initialize, launch, launch_from_openmpi, launch_from_slurm, launch_from_torch,
|
||||
get_default_parser)
|
||||
|
||||
__version__ = '0.0.1'
|
||||
__version__ = '0.1.9'
|
||||
|
|
|
@ -1,2 +1,2 @@
|
|||
from .tracer import ColoTracer
|
||||
from .tracer import ColoTracer, meta_trace
|
||||
from .graph_module import ColoGraphModule
|
||||
|
|
|
@ -1,8 +1,3 @@
|
|||
try:
|
||||
from ._meta_registrations import *
|
||||
except:
|
||||
import torch
|
||||
print(f'_meta_registrations seems to be incompatible with PyTorch {torch.__version__}.')
|
||||
from .meta_tensor import MetaTensor
|
||||
from .registry import meta_profiler_function, meta_profiler_module
|
||||
from .profiler_function import *
|
||||
|
|
|
@ -1 +1,2 @@
|
|||
from .tracer import ColoTracer
|
||||
from ._meta_trace import meta_trace
|
||||
|
|
|
@ -0,0 +1,99 @@
|
|||
import torch
|
||||
from torch.fx import Node, Graph
|
||||
from torch.fx.graph import _Namespace
|
||||
from torch.utils._pytree import tree_map
|
||||
|
||||
|
||||
def meta_trace(module: torch.nn.Module, *args, **kwargs) -> Graph:
|
||||
"""Trace forward and backward graph with MetaTensor
|
||||
|
||||
Args:
|
||||
module (torch.nn.Module): The target module for tracing.
|
||||
|
||||
Returns:
|
||||
graph (torch.fx.Graph): The computation graph.
|
||||
|
||||
Usage:
|
||||
>>> import torchvision.models as tm
|
||||
>>> model = tm.alexnet()
|
||||
>>> graph = meta_trace(model, torch.rand(1000, 3, 224, 224))
|
||||
>>> graph.print_tabular()
|
||||
"""
|
||||
graph = Graph()
|
||||
namespace = _Namespace()
|
||||
|
||||
class MetaProxy(torch.Tensor):
|
||||
"""
|
||||
A wrapping tensor that hacks `torch.autograd` without patching more `torch.ops.aten` ops.
|
||||
"""
|
||||
|
||||
_tensor: torch.Tensor
|
||||
_node: Node
|
||||
|
||||
__slots__ = ['_tensor', '_node']
|
||||
|
||||
@staticmethod
|
||||
def __new__(cls, tensor, placeholder=False, name=None):
|
||||
r = torch.Tensor._make_wrapper_subclass(
|
||||
cls,
|
||||
tensor.size(),
|
||||
strides=tensor.stride(),
|
||||
storage_offset=tensor.storage_offset(),
|
||||
dtype=tensor.dtype,
|
||||
layout=tensor.layout,
|
||||
device='cpu',
|
||||
requires_grad=tensor.requires_grad) # deceive the frontend for aten selections
|
||||
r._tensor = tensor
|
||||
if placeholder:
|
||||
if name is None:
|
||||
name = 'input'
|
||||
r._node = graph.create_node('placeholder',
|
||||
'placeholder', (graph._root,),
|
||||
name=namespace.create_name(name, tensor))
|
||||
# ...the real tensor is held as an element on the tensor.
|
||||
return r
|
||||
|
||||
@classmethod
|
||||
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
||||
|
||||
def unwrap(x):
|
||||
if isinstance(x, torch.Tensor) and not hasattr(x, '_tensor'):
|
||||
x = MetaProxy(x)
|
||||
return x._tensor.to('meta') if isinstance(x, MetaProxy) else x
|
||||
|
||||
def get_node(x):
|
||||
if isinstance(x, torch.Tensor) and not hasattr(x, '_node'):
|
||||
x = MetaProxy(x, placeholder=True, name='weight')
|
||||
return x if not hasattr(x, '_node') else x._node
|
||||
|
||||
args_node = tree_map(get_node, args)
|
||||
kwargs_node = tree_map(get_node, kwargs)
|
||||
node = graph.create_node('call_function', func, args_node, kwargs_node)
|
||||
|
||||
args = tree_map(unwrap, args)
|
||||
kwargs = tree_map(unwrap, kwargs)
|
||||
|
||||
# run aten for backend=CPU but actually on backend=Meta
|
||||
out = func(*args, **kwargs)
|
||||
|
||||
# Now, we want to continue propagating this tensor, so we rewrap Tensors in
|
||||
# our custom tensor subclass
|
||||
def wrap(x):
|
||||
return MetaProxy(x) if isinstance(x, torch.Tensor) and not hasattr(x, '_tensor') else x
|
||||
|
||||
def set_node(x):
|
||||
x._node = node
|
||||
|
||||
out = tree_map(wrap, out)
|
||||
tree_map(set_node, out)
|
||||
|
||||
return out
|
||||
|
||||
def wrap(x):
|
||||
return MetaProxy(x, True) if isinstance(x, torch.Tensor) else x
|
||||
|
||||
args = tree_map(wrap, args)
|
||||
kwargs = tree_map(wrap, kwargs)
|
||||
|
||||
module(*args, **kwargs).sum().backward()
|
||||
return graph
|
Loading…
Reference in New Issue