|
|
|
@ -1,12 +1,17 @@
|
|
|
|
|
import diffusers |
|
|
|
|
import pytest |
|
|
|
|
import torch |
|
|
|
|
import transformers |
|
|
|
|
from torch.fx import GraphModule |
|
|
|
|
from utils import trace_model_and_compare_output |
|
|
|
|
|
|
|
|
|
import transformers |
|
|
|
|
from colossalai.fx import ColoTracer |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
import diffusers |
|
|
|
|
HAS_DIFFUSERS = True |
|
|
|
|
except ImportError: |
|
|
|
|
HAS_DIFFUSERS = False |
|
|
|
|
|
|
|
|
|
BATCH_SIZE = 2 |
|
|
|
|
SEQ_LENGTH = 5 |
|
|
|
|
HEIGHT = 224 |
|
|
|
@ -16,6 +21,7 @@ LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 8, WIDTH // 8)
|
|
|
|
|
TIME_STEP = 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not HAS_DIFFUSERS, reason="diffusers has not been installed") |
|
|
|
|
def test_vae(): |
|
|
|
|
MODEL_LIST = [ |
|
|
|
|
diffusers.AutoencoderKL, |
|
|
|
@ -80,6 +86,7 @@ def test_clip():
|
|
|
|
|
trace_model_and_compare_output(model, data_gen) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not HAS_DIFFUSERS, reason="diffusers has not been installed") |
|
|
|
|
@pytest.mark.skip(reason='cannot pass the test yet') |
|
|
|
|
def test_unet(): |
|
|
|
|
MODEL_LIST = [ |
|
|
|
|