mirror of https://github.com/hpcaitech/ColossalAI
feat: add qwen2 to model_zoo
parent
14305c9449
commit
6fa181ebef
|
@ -8,6 +8,7 @@ from .gpt import *
|
|||
from .gptj import *
|
||||
from .llama import *
|
||||
from .opt import *
|
||||
from .qwen2 import *
|
||||
from .sam import *
|
||||
from .t5 import *
|
||||
from .vit import *
|
||||
|
|
|
@ -1,87 +0,0 @@
|
|||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
try:
|
||||
from transformers import Qwen2Config
|
||||
|
||||
HAS_QWEN2 = True
|
||||
except ImportError:
|
||||
HAS_QWEN2 = False
|
||||
|
||||
if HAS_QWEN2:
|
||||
# ===============================
|
||||
# Register Qwen2
|
||||
# ===============================
|
||||
|
||||
def data_gen():
|
||||
# the input ids are corresponding to the sentence
|
||||
# 'Hello, my dog is cute'
|
||||
#
|
||||
# the code is give below:
|
||||
# -----------------------------------
|
||||
# from transformers import Qwen2TokenizerFast
|
||||
# tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen1.5-7B-Chat")
|
||||
# input = 'Hello, my dog is cute'
|
||||
# tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
|
||||
# -----------------------------------
|
||||
|
||||
input_ids = torch.Tensor([[9707, 11, 847, 5562, 374, 18838], [9707, 11, 847, 5562, 374, 18838]]).long()
|
||||
attention_mask = torch.Tensor([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]]).long()
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
# label is needed for casual lm
|
||||
def data_gen_for_casual_lm():
|
||||
data = data_gen()
|
||||
labels = data["input_ids"].clone()
|
||||
data["labels"] = labels
|
||||
return data
|
||||
|
||||
# transform the output to a dict
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
# function to get the loss
|
||||
loss_fn = lambda output: output["last_hidden_state"].mean()
|
||||
loss_fn_for_casual_lm = lambda output: output["loss"]
|
||||
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
|
||||
|
||||
config = Qwen2Config(
|
||||
hidden_size=128,
|
||||
intermediate_size=256,
|
||||
max_window_layers=4,
|
||||
num_attention_heads=16,
|
||||
num_hidden_layers=4,
|
||||
num_key_value_heads=16,
|
||||
)
|
||||
|
||||
config.pad_token_id = 0
|
||||
|
||||
# register the following models
|
||||
# transformers.Qwen2Model,
|
||||
# transformers.Qwen2ForCausalLM,
|
||||
# transformers.Qwen2ForSequenceClassification,
|
||||
model_zoo.register(
|
||||
name="transformers_qwen2",
|
||||
model_fn=lambda: transformers.Qwen2Model(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_qwen2_for_casual_lm",
|
||||
model_fn=lambda: transformers.Qwen2ForCausalLM(config),
|
||||
data_gen_fn=data_gen_for_casual_lm,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_casual_lm,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
||||
model_zoo.register(
|
||||
name="transformers_qwen2_for_sequence_classification",
|
||||
model_fn=lambda: transformers.Qwen2ForSequenceClassification(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
loss_fn=loss_fn_for_seq_classification,
|
||||
model_attribute=ModelAttribute(has_control_flow=True),
|
||||
)
|
Loading…
Reference in New Issue