Browse Source

[fix] tmp for test

pull/5434/head
Runyu Lu 8 months ago
parent
commit
6e30248683
  1. 12
      colossalai/inference/modeling/models/nopadding_llama.py

12
colossalai/inference/modeling/models/nopadding_llama.py

@ -84,6 +84,7 @@ def llama_model_forward(
sequence_lengths = inputmetadata.sequence_lengths
batch_size = inputmetadata.batch_size
kv_seq_len = inputmetadata.kv_seq_len
# use_cuda_kernel = False
use_cuda_kernel = True
# NOTE: After testing, the performance of this configuration is relatively good. With updates
# and optimizations to the CUDA kernel implementation, a more detailed analysis of this configuration's
@ -97,7 +98,7 @@ def llama_model_forward(
sm_scale = 1.0 / (inputmetadata.head_dim**0.5)
norm_output = None
norm_output = torch.empty_like(hidden_states)
residual = None
for layer_id, decoder_layer in enumerate(self.layers):
@ -122,10 +123,9 @@ def llama_model_forward(
last_token_indexs = sequence_lengths.cumsum(dim=-1)
hidden_states = hidden_states[last_token_indexs - 1].contiguous()
residual = residual[last_token_indexs - 1].contiguous()
norm_output = torch.empty_like(hidden_states) # NOTE non-functional, but cuda graph only capture decoding only
norm_output = torch.empty_like(hidden_states)
hidden_states, _ = self.norm(hidden_states, norm_output, residual, use_cuda_kernel)
return hidden_states
@ -198,7 +198,8 @@ def llama_rmsnorm_forward(
residual: torch.Tensor = None,
use_cuda_kernel: bool = True,
):
if use_cuda_kernel:
# if use_cuda_kernel:
if False:
if residual is not None:
inference_ops.fused_add_rms_layernorm(hidden_states, residual, self.weight.data, self.variance_epsilon)
return hidden_states, residual
@ -338,7 +339,8 @@ class NopadLlamaAttention(LlamaAttention):
sm_scale=sm_scale,
)
else:
if use_cuda_kernel:
# if use_cuda_kernel:
if False:
inference_ops.rotary_embedding_and_cache_copy(
query_states,
key_states,

Loading…
Cancel
Save