mirror of https://github.com/hpcaitech/ColossalAI
[test] added transformers models to test model zoo (#3135)
parent
a674c63348
commit
6d48eb0560
|
@ -1,4 +1,4 @@
|
|||
from . import diffusers, timm, torchvision
|
||||
from . import diffusers, timm, torchvision, transformers
|
||||
from .registry import model_zoo
|
||||
|
||||
__all__ = ['model_zoo']
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
from .albert import *
|
||||
from .bert import *
|
||||
from .gpt import *
|
||||
from .opt import *
|
||||
from .t5 import *
|
|
@ -0,0 +1,85 @@
|
|||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence ALBERT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen_fn():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.AlbertConfig(embedding_size=128,
|
||||
hidden_size=128,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=256)
|
||||
|
||||
model_zoo.register(name='transformers_albert',
|
||||
model_fn=lambda: transformers.AlbertModel(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_pretraining',
|
||||
model_fn=lambda: transformers.AlbertForPreTraining(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_masked_lm',
|
||||
model_fn=lambda: transformers.AlbertForMaskedLM(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_sequence_classification',
|
||||
model_fn=lambda: transformers.AlbertForSequenceClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_token_classification',
|
||||
model_fn=lambda: transformers.AlbertForTokenClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
||||
# ===============================
|
||||
# Register multi-sentence ALBERT
|
||||
# ===============================
|
||||
|
||||
|
||||
def data_gen_for_qa():
|
||||
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
inputs = tokenizer(question, text, return_tensors="pt")
|
||||
return inputs
|
||||
|
||||
|
||||
def data_gen_for_mcq():
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
choice0 = "It is eaten with a fork and a knife."
|
||||
choice1 = "It is eaten while held in the hand."
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
||||
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
|
||||
return encoding
|
||||
|
||||
|
||||
model_zoo.register(name='transformers_albert_for_question_answering',
|
||||
model_fn=lambda: transformers.AlbertForQuestionAnswering(config),
|
||||
data_gen_fn=data_gen_for_qa,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_albert_for_multiple_choice',
|
||||
model_fn=lambda: transformers.AlbertForMultipleChoice(config),
|
||||
data_gen_fn=data_gen_for_mcq,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
|
@ -0,0 +1,88 @@
|
|||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence BERT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen_fn():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.BertConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256)
|
||||
|
||||
# register the BERT variants
|
||||
model_zoo.register(name='transformers_bert',
|
||||
model_fn=lambda: transformers.BertModel(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_pretraining',
|
||||
model_fn=lambda: transformers.BertForPreTraining(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_lm_head_model',
|
||||
model_fn=lambda: transformers.BertLMHeadModel(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_masked_lm',
|
||||
model_fn=lambda: transformers.BertForMaskedLM(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_sequence_classification',
|
||||
model_fn=lambda: transformers.BertForSequenceClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_token_classification',
|
||||
model_fn=lambda: transformers.BertForTokenClassification(config),
|
||||
data_gen_fn=data_gen_fn,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
|
||||
|
||||
# ===============================
|
||||
# Register multi-sentence BERT
|
||||
# ===============================
|
||||
def data_gen_for_next_sentence():
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
||||
encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
||||
return encoding
|
||||
|
||||
|
||||
def data_gen_for_mcq():
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
choice0 = "It is eaten with a fork and a knife."
|
||||
choice1 = "It is eaten while held in the hand."
|
||||
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
||||
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
|
||||
return encoding
|
||||
|
||||
|
||||
# register the following models
|
||||
model_zoo.register(name='transformers_bert_for_next_sentence',
|
||||
model_fn=lambda: transformers.BertForNextSentencePrediction(config),
|
||||
data_gen_fn=data_gen_for_next_sentence,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_bert_for_mcq',
|
||||
model_fn=lambda: transformers.BertForMultipleChoice(config),
|
||||
data_gen_fn=data_gen_for_mcq,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
|
@ -0,0 +1,49 @@
|
|||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence GPT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=4)
|
||||
|
||||
# register the following models
|
||||
model_zoo.register(name='transformers_gpt',
|
||||
model_fn=lambda: transformers.GPT2Model(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_lm',
|
||||
model_fn=lambda: transformers.GPT2LMHeadModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_double_heads',
|
||||
model_fn=lambda: transformers.GPT2DoubleHeadsModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_for_token_classification',
|
||||
model_fn=lambda: transformers.GPT2ForTokenClassification(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_gpt_for_sequence_classification',
|
||||
model_fn=lambda: transformers.GPT2ForSequenceClassification(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
|
@ -0,0 +1,35 @@
|
|||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence OPT
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.OPTConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4)
|
||||
|
||||
# register the following models
|
||||
# transformers.OPTModel,
|
||||
# transformers.OPTForCausalLM,
|
||||
model_zoo.register(name='transformers_opt',
|
||||
model_fn=lambda: transformers.OPTModel(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_opt_for_causal_lm',
|
||||
model_fn=lambda: transformers.OPTForCausalLM(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
|
@ -0,0 +1,46 @@
|
|||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
# ===============================
|
||||
# Register single-sentence T5
|
||||
# ===============================
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
decoder_input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
||||
|
||||
|
||||
def data_gen_for_encoder_only():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids)
|
||||
|
||||
|
||||
output_transform_fn = lambda x: x
|
||||
|
||||
config = transformers.T5Config(d_model=128, num_layers=2)
|
||||
|
||||
# register the following models
|
||||
# transformers.T5Model,
|
||||
# transformers.T5ForConditionalGeneration,
|
||||
# transformers.T5EncoderModel,
|
||||
model_zoo.register(name='transformers_t5',
|
||||
model_fn=lambda: transformers.T5Model(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_t5_for_conditional_generation',
|
||||
model_fn=lambda: transformers.T5ForConditionalGeneration(config),
|
||||
data_gen_fn=data_gen,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
||||
model_zoo.register(name='transformers_t5_encoder_model',
|
||||
model_fn=lambda: transformers.T5EncoderModel(config),
|
||||
data_gen_fn=data_gen_for_encoder_only,
|
||||
output_transform_fn=output_transform_fn,
|
||||
model_attribute=ModelAttribute(has_control_flow=True))
|
|
@ -1,66 +1,18 @@
|
|||
import pytest
|
||||
import torch
|
||||
import transformers
|
||||
from hf_tracer_utils import trace_model_and_compare_output
|
||||
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
|
||||
|
||||
def test_single_sentence_albert():
|
||||
MODEL_LIST = [
|
||||
transformers.AlbertModel,
|
||||
transformers.AlbertForPreTraining,
|
||||
transformers.AlbertForMaskedLM,
|
||||
transformers.AlbertForSequenceClassification,
|
||||
transformers.AlbertForTokenClassification,
|
||||
]
|
||||
def test_albert():
|
||||
sub_registry = model_zoo.get_sub_registry('transformers_albert')
|
||||
|
||||
config = transformers.AlbertConfig(embedding_size=128,
|
||||
hidden_size=128,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=256)
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
return meta_args
|
||||
|
||||
for model_cls in MODEL_LIST:
|
||||
model = model_cls(config=config)
|
||||
trace_model_and_compare_output(model, data_gen)
|
||||
|
||||
|
||||
def test_multi_sentence_albert():
|
||||
config = transformers.AlbertConfig(hidden_size=128,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=256)
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
|
||||
def data_gen_for_qa():
|
||||
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||
inputs = tokenizer(question, text, return_tensors="pt")
|
||||
return inputs
|
||||
|
||||
model = transformers.AlbertForQuestionAnswering(config)
|
||||
trace_model_and_compare_output(model, data_gen_for_qa)
|
||||
|
||||
def data_gen_for_mcq():
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
choice0 = "It is eaten with a fork and a knife."
|
||||
choice1 = "It is eaten while held in the hand."
|
||||
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
||||
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
|
||||
return encoding
|
||||
|
||||
model = transformers.AlbertForMultipleChoice(config)
|
||||
trace_model_and_compare_output(model, data_gen_for_mcq)
|
||||
for name, (model_fn, data_gen_fn, _, _) in sub_registry.items():
|
||||
model = model_fn()
|
||||
trace_model_and_compare_output(model, data_gen_fn)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_single_sentence_albert()
|
||||
test_multi_sentence_albert()
|
||||
test_albert()
|
||||
|
|
|
@ -1,69 +1,15 @@
|
|||
import pytest
|
||||
import torch
|
||||
import transformers
|
||||
from hf_tracer_utils import trace_model_and_compare_output
|
||||
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 16
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
def test_single_sentence_bert():
|
||||
MODEL_LIST = [
|
||||
transformers.BertModel,
|
||||
transformers.BertForPreTraining,
|
||||
transformers.BertLMHeadModel,
|
||||
transformers.BertForMaskedLM,
|
||||
transformers.BertForSequenceClassification,
|
||||
transformers.BertForTokenClassification,
|
||||
]
|
||||
def test_bert():
|
||||
sub_registry = model_zoo.get_sub_registry('transformers_bert')
|
||||
|
||||
config = transformers.BertConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256)
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
return meta_args
|
||||
|
||||
for model_cls in MODEL_LIST:
|
||||
model = model_cls(config=config)
|
||||
trace_model_and_compare_output(model, data_gen)
|
||||
|
||||
|
||||
def test_multi_sentence_bert():
|
||||
config = transformers.BertConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4, intermediate_size=256)
|
||||
tokenizer = transformers.BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
|
||||
def data_gen_for_next_sentence():
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
||||
encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
||||
return encoding
|
||||
|
||||
model = transformers.BertForNextSentencePrediction(config)
|
||||
trace_model_and_compare_output(model, data_gen_for_next_sentence)
|
||||
|
||||
def data_gen_for_qa():
|
||||
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
||||
inputs = tokenizer(question, text, return_tensors="pt")
|
||||
return inputs
|
||||
|
||||
model = transformers.BertForQuestionAnswering(config)
|
||||
trace_model_and_compare_output(model, data_gen_for_qa)
|
||||
|
||||
def data_gen_for_mcq():
|
||||
prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
||||
choice0 = "It is eaten with a fork and a knife."
|
||||
choice1 = "It is eaten while held in the hand."
|
||||
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
|
||||
encoding = {k: v.unsqueeze(0) for k, v in encoding.items()}
|
||||
return encoding
|
||||
|
||||
model = transformers.BertForMultipleChoice(config)
|
||||
trace_model_and_compare_output(model, data_gen_for_mcq)
|
||||
for name, (model_fn, data_gen_fn, _, _) in sub_registry.items():
|
||||
model = model_fn()
|
||||
trace_model_and_compare_output(model, data_gen_fn)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_single_sentence_bert()
|
||||
test_multi_sentence_bert()
|
||||
test_bert()
|
||||
|
|
|
@ -1,35 +1,17 @@
|
|||
import pytest
|
||||
import torch
|
||||
import transformers
|
||||
from hf_tracer_utils import trace_model_and_compare_output
|
||||
|
||||
BATCH_SIZE = 1
|
||||
SEQ_LENGTH = 16
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
# TODO: remove this skip once we handle the latest gpt model
|
||||
@pytest.mark.skip
|
||||
def test_gpt():
|
||||
MODEL_LIST = [
|
||||
transformers.GPT2Model,
|
||||
transformers.GPT2LMHeadModel,
|
||||
transformers.GPT2DoubleHeadsModel,
|
||||
transformers.GPT2ForTokenClassification,
|
||||
# transformers.GPT2ForSequenceClassification, # not supported yet
|
||||
]
|
||||
sub_registry = model_zoo.get_sub_registry('transformers_gpt')
|
||||
|
||||
config = transformers.GPT2Config(n_position=64, n_layer=2, n_head=4)
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
kwargs = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
return kwargs
|
||||
|
||||
for model_cls in MODEL_LIST:
|
||||
model = model_cls(config=config)
|
||||
trace_model_and_compare_output(model, data_gen)
|
||||
for name, (model_fn, data_gen_fn, _, _) in sub_registry.items():
|
||||
model = model_fn()
|
||||
trace_model_and_compare_output(model, data_gen_fn)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -1,29 +1,14 @@
|
|||
import pytest
|
||||
import torch
|
||||
import transformers
|
||||
from hf_tracer_utils import trace_model_and_compare_output
|
||||
|
||||
BATCH_SIZE = 1
|
||||
SEQ_LENGTH = 16
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
def test_opt():
|
||||
MODEL_LIST = [
|
||||
transformers.OPTModel,
|
||||
transformers.OPTForCausalLM,
|
||||
]
|
||||
sub_registry = model_zoo.get_sub_registry('transformers_opt')
|
||||
|
||||
config = transformers.OPTConfig(hidden_size=128, num_hidden_layers=2, num_attention_heads=4)
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
return kwargs
|
||||
|
||||
for model_cls in MODEL_LIST:
|
||||
model = model_cls(config=config)
|
||||
trace_model_and_compare_output(model, data_gen)
|
||||
for name, (model_fn, data_gen_fn, _, _) in sub_registry.items():
|
||||
model = model_fn()
|
||||
trace_model_and_compare_output(model, data_gen_fn)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -1,41 +1,14 @@
|
|||
import pytest
|
||||
import torch
|
||||
import transformers
|
||||
from hf_tracer_utils import trace_model_and_compare_output
|
||||
|
||||
BATCH_SIZE = 1
|
||||
SEQ_LENGTH = 16
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
def test_t5():
|
||||
MODEL_LIST = [
|
||||
transformers.T5Model,
|
||||
transformers.T5ForConditionalGeneration,
|
||||
transformers.T5EncoderModel,
|
||||
]
|
||||
sub_registry = model_zoo.get_sub_registry('transformers_t5')
|
||||
|
||||
config = transformers.T5Config(d_model=128, num_layers=2)
|
||||
|
||||
def data_gen():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
decoder_input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
kwargs = dict(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
||||
return kwargs
|
||||
|
||||
def data_gen_for_encoder_only():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
kwargs = dict(input_ids=input_ids)
|
||||
return kwargs
|
||||
|
||||
for model_cls in MODEL_LIST:
|
||||
model = model_cls(config=config)
|
||||
|
||||
if isinstance(model, transformers.T5EncoderModel):
|
||||
data_gen_func = data_gen_for_encoder_only
|
||||
else:
|
||||
data_gen_func = data_gen
|
||||
|
||||
trace_model_and_compare_output(model, data_gen_func)
|
||||
for name, (model_fn, data_gen_fn, _, _) in sub_registry.items():
|
||||
model = model_fn()
|
||||
trace_model_and_compare_output(model, data_gen_fn)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue