tests: add `sub_dp_group` test

pull/5817/head
Wenhao Chen 2024-04-01 14:51:36 +08:00 committed by アマデウス
parent 9291f07964
commit 6ceaf4f1f8
2 changed files with 63 additions and 24 deletions

View File

@ -8,12 +8,28 @@ from torch.testing import assert_close
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.testing import spawn
from colossalai.testing import parameterize, spawn
from colossalai.testing.random import seed_all
from colossalai.utils import conditional_context
from colossalai.zero import LowLevelZeroOptimizer
def loose_close(a, b, dtype: torch.dtype = torch.float32):
rtol = None
atol = None
if dtype is torch.float16:
rtol = 5e-2
atol = 5e-4
elif dtype is torch.bfloat16:
rtol = 4e-3
atol = 4e-3
a = a.detach().to(dtype)
b = b.detach().to(dtype)
assert_close(a, b, rtol=rtol, atol=atol)
class MlpModel(nn.Module):
def __init__(self):
super(MlpModel, self).__init__()
@ -26,7 +42,9 @@ class MlpModel(nn.Module):
return x
def exam_zero_1_2_grad_acc():
@parameterize("sub_dp_size", [1, 2])
def exam_zero_1_2_grad_acc(sub_dp_size: int):
assert torch.distributed.get_world_size() % sub_dp_size == 0
local_rank = torch.distributed.get_rank()
seed_all(2009)
device = get_accelerator().get_current_device()
@ -37,10 +55,20 @@ def exam_zero_1_2_grad_acc():
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
zero1_optimizer = LowLevelZeroOptimizer(
zero1_optimizer, overlap_communication=True, initial_scale=32, clip_grad_norm=1.0, verbose=True
zero1_optimizer,
overlap_communication=True,
initial_scale=32,
clip_grad_norm=1.0,
verbose=True,
sub_dp_size=sub_dp_size,
)
zero2_optimizer = LowLevelZeroOptimizer(
zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=32, clip_grad_norm=1.0
zero2_optimizer,
overlap_communication=True,
partition_grad=True,
initial_scale=32,
clip_grad_norm=1.0,
sub_dp_size=sub_dp_size,
)
# create data
seed_all(2021 + local_rank)
@ -51,7 +79,7 @@ def exam_zero_1_2_grad_acc():
# zero-dp forward
zero1_output = zero1_model(cur_data)
zero2_output = zero2_model(cur_data)
assert torch.equal(zero1_output, zero2_output)
loose_close(zero1_output, zero2_output)
# zero-dp backward
zero1_optimizer.backward(zero1_output.sum().float())
@ -66,10 +94,13 @@ def exam_zero_1_2_grad_acc():
# check updated param
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
assert torch.equal(z1p.data, z2p.data)
loose_close(z1p.data, z2p.data)
def exam_zero_1_grad_acc(sync):
@parameterize("no_sync", [True, False])
@parameterize("sub_dp_size", [1, 2])
def exam_zero_1_grad_acc(no_sync: bool, sub_dp_size: int):
assert torch.distributed.get_world_size() % sub_dp_size == 0
local_rank = torch.distributed.get_rank()
seed_all(2008)
device = get_accelerator().get_current_device()
@ -89,7 +120,11 @@ def exam_zero_1_grad_acc(sync):
# in `check_sharded_param_consistency.py`, we will test whether
# level 1 and 2 will produce exactly the same results
zero_optimizer = LowLevelZeroOptimizer(
zero_optimizer, overlap_communication=False, reduce_bucket_size=262144, clip_grad_norm=1.0
zero_optimizer,
overlap_communication=False,
reduce_bucket_size=262144,
clip_grad_norm=1.0,
sub_dp_size=sub_dp_size,
)
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1)
@ -108,38 +143,37 @@ def exam_zero_1_grad_acc(sync):
# torch-ddp fwd and bwd
with conditional_context(torch_model.no_sync(), no_sync):
torch_output = torch_model(cur_data)
assert torch.equal(zero_output, torch_output)
loose_close(zero_output, torch_output)
torch_output.sum().backward()
if check_flag:
# check grad
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
assert torch.equal(p.grad, z1p.grad)
loose_close(p.grad, z1p.grad)
fwd_bwd_func(sync, input_data1, sync)
fwd_bwd_func(no_sync, input_data1, no_sync)
fwd_bwd_func(False, input_data2, False)
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0)
zero_optimizer.step()
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0)
torch_optimizer.step()
# check updated param
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# print(n, p.shape, torch.max(p.data), torch.max(z1p.data), torch.max(torch.abs(p.data - z1p.data)))
assert_close(p.data, z1p.data)
loose_close(p.data, z1p.data)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost")
exam_zero_1_grad_acc(sync=True)
exam_zero_1_grad_acc(sync=False)
exam_zero_1_grad_acc()
exam_zero_1_2_grad_acc()
@pytest.mark.dist
def test_grad_accumulation():
spawn(run_dist, 2)
spawn(run_dist, 4)
if __name__ == "__main__":

View File

@ -51,7 +51,8 @@ def split_ddp_grad(grad, world_size):
return splited_grad
def exam_zero_1_2():
@parameterize("sub_dp_size", [1, 2])
def exam_zero_1_2(sub_dp_size: int):
"""
In this test, we want to test whether zero stage 1 and 2
deliver the same numerical results despite different communication
@ -62,6 +63,7 @@ def exam_zero_1_2():
pg: partition gradients and optimizer states
"""
assert torch.distributed.get_world_size() % sub_dp_size == 0
local_rank = torch.distributed.get_rank()
seed_all(2001)
@ -73,10 +75,10 @@ def exam_zero_1_2():
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
zero1_optimizer = LowLevelZeroOptimizer(
zero1_optimizer, overlap_communication=True, initial_scale=128, verbose=True
zero1_optimizer, overlap_communication=True, initial_scale=128, verbose=True, sub_dp_size=sub_dp_size
)
zero2_optimizer = LowLevelZeroOptimizer(
zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=128
zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=128, sub_dp_size=sub_dp_size
)
# create data
seed_all(2001 + local_rank)
@ -94,7 +96,7 @@ def exam_zero_1_2():
z1g_list = zero1_optimizer._grad_store.get_working_grads_by_group_id(0)
z2g_list = zero2_optimizer._grad_store.get_working_grads_by_group_id(0)
for z1g, z2g in zip(z1g_list, z2g_list):
assert torch.equal(z1g, z2g)
loose_close(z1g, z2g)
# step
zero1_optimizer.step()
@ -102,12 +104,13 @@ def exam_zero_1_2():
# check updated param
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
assert torch.equal(z1p.data, z2p.data)
loose_close(z1p.data, z2p.data)
@parameterize("dtype", [torch.float16, torch.bfloat16])
@parameterize("master_weights", [True, False])
def exam_zero_1_torch_ddp(world_size, dtype: torch.dtype, master_weights: bool):
@parameterize("sub_dp_size", [1, 2])
def exam_zero_1_torch_ddp(world_size, dtype: torch.dtype, master_weights: bool, sub_dp_size: int):
"""
In this test, two pairs of model and optimizers are created.
1. zero: use sharded optimizer and fp16 parameters
@ -116,6 +119,7 @@ def exam_zero_1_torch_ddp(world_size, dtype: torch.dtype, master_weights: bool):
We feed these two sets of models with the same input and check if the
differences in model output and updated parameters are within tolerance.
"""
assert world_size % sub_dp_size == 0
local_rank = torch.distributed.get_rank()
seed_all(1453)
@ -137,6 +141,7 @@ def exam_zero_1_torch_ddp(world_size, dtype: torch.dtype, master_weights: bool):
initial_scale=1,
reduce_bucket_size=1024 * 1024,
master_weights=master_weights,
sub_dp_size=sub_dp_size,
)
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
@ -162,7 +167,7 @@ def exam_zero_1_torch_ddp(world_size, dtype: torch.dtype, master_weights: bool):
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
if p.grad is not None:
zero_grad_list = zero_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(z1p))
torch_grad_list = split_ddp_grad(p.grad, world_size)
torch_grad_list = split_ddp_grad(p.grad, world_size // sub_dp_size)
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list):
loose_close(zero_grad, torch_grad, dtype=dtype)
@ -187,7 +192,7 @@ def run_dist(rank, world_size, port):
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_zero_1_2():
spawn(run_dist, 2)
spawn(run_dist, 4)
if __name__ == "__main__":