[shardformer] support llama model using shardformer (#3969)

adjust layer attr
pull/4157/head
wukong1992 2023-06-13 14:44:40 +08:00 committed by Frank Lee
parent 45927d5527
commit 6b30dfb7ce
4 changed files with 243 additions and 1 deletions

View File

@ -21,7 +21,7 @@ class DistCrossEntropy(Function):
and can be rewrite as:
loss = log(sum(exp(x[i])) - x[class]
To avoid the `nan` of log(sim(exp(x[i]))), we minus the max of x[i]
To avoid the `nan` of log(sum(exp(x[i]))), we minus the max of x[i]
Args:
vocab_logits (:class:`torch.Tensor`): The logits of the vocabulary, shape is

View File

@ -19,6 +19,20 @@ def build_policies():
from .bert import BertForSequenceClassificationPolicy
auto_policy_dict[BertForSequenceClassification] = BertForSequenceClassificationPolicy
from transformers.models.llama.modeling_llama import LlamaModel
from .llama import LlamaPolicy
auto_policy_dict[LlamaModel] = LlamaPolicy
from transformers import LlamaForSequenceClassification
from .llama import LlamaForSequenceClassificationPolicy
auto_policy_dict[LlamaForSequenceClassification] = LlamaForSequenceClassificationPolicy
from transformers import LlamaForCausalLM
from .llama import LlamaForCausalLMPolicy
auto_policy_dict[LlamaForCausalLM] = LlamaForCausalLMPolicy
from transformers import GPT2Model

View File

@ -0,0 +1,122 @@
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Tuple, Type
import torch.nn as nn
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaModel
import colossalai.shardformer.layer.layers as col_nn
from .basepolicy import Argument, Col_Layer, Policy, Row_Layer
class LlamaPolicy(Policy):
@staticmethod
def argument_policy(config, world_size: int) -> Dict[nn.Module, Argument]:
return {
LlamaDecoderLayer:
Argument(attr_dict={
"self_attn.hidden_size": config.hidden_size // world_size,
"self_attn.num_heads": config.num_attention_heads // world_size,
},
param_funcs=[LlamaPolicy.attn_layer, LlamaPolicy.mlp_layer]),
LlamaModel:
Argument(attr_dict={}, param_funcs=[LlamaPolicy.embeddings])
}
@staticmethod
def attn_layer() -> List:
return [
Col_Layer(
suffix="self_attn.q_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
),
Col_Layer(
suffix="self_attn.k_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
),
Col_Layer(
suffix="self_attn.v_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
),
Row_Layer(
suffix="self_attn.o_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Row,
)
]
@staticmethod
def mlp_layer() -> List:
return [
Col_Layer(
suffix="mlp.gate_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
gather_output=True,
),
Col_Layer(
suffix="mlp.up_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Row,
gather_output=True,
),
Col_Layer(
suffix="mlp.down_proj",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
gather_output=True,
),
]
@staticmethod
def embeddings() -> List:
return [Col_Layer(
suffix="embed_tokens",
weight="weight",
replace_layer=col_nn.VocabParallelEmbedding1D,
)]
from transformers import LlamaForCausalLM
class LlamaForCausalLMPolicy(LlamaPolicy):
@staticmethod
def argument(config, world_size):
llamapolicy = LlamaPolicy.argument_policy(config, world_size)
argument = {LlamaForCausalLM: Argument(attr_dict={}, param_funcs=[LlamaForCausalLMPolicy.lm_head])}
argument.update(llamapolicy)
@staticmethod
def lm_head() -> List:
return [Col_Layer(suffix="lm_head", weight="weight", replace_layer=col_nn.Linear1D_Col, gather_output=True)]
from transformers import LlamaForSequenceClassification
class LlamaForSequenceClassificationPolicy(LlamaPolicy):
@staticmethod
def argument(config, world_size):
llamapolicy = LlamaPolicy.argument_policy(config, world_size)
argument = {
LlamaForSequenceClassification:
Argument(attr_dict={}, param_funcs=[LlamaForSequenceClassificationPolicy.score])
}
argument.update(llamapolicy)
@staticmethod
def score() -> List:
return [Col_Layer(suffix="score", weight="weight", replace_layer=col_nn.Linear1D_Col, gather_output=True)]

View File

@ -0,0 +1,106 @@
import copy
import os
import random
import pytest
import torch
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, LlamaModel, LlamaTokenizerFast
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer.shard import ShardConfig, shard_model
from colossalai.testing import rerun_if_address_is_in_use, spawn
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
CONFIG = dict(parallel=dict(data=1, pipeline=1, tensor=dict(size=4, mode='1d')),)
tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
def build_model(rank, world_size):
cfg = LlamaConfig(num_hidden_layers=16)
org_model = LlamaForCausalLM(cfg)
shardconfig = ShardConfig(
rank=rank,
world_size=world_size,
gather_output=True,
)
org_model = org_model.to('cuda')
org_model_forshard = copy.deepcopy(org_model)
sharded_model = shard_model(org_model_forshard, shardconfig).to('cuda')
return org_model, sharded_model
def check_forward(org_model, sharded_model):
input = 'Hello, my dog is cute'
inputs = tokenizer(input, return_tensors='pt').to('cuda')
del inputs["token_type_ids"]
del inputs["attention_mask"]
#orgin model
org_model.eval()
org_out = org_model(**inputs)
#shard model
sharded_model.eval()
shard_out = sharded_model(**inputs)
assert torch.allclose(
org_out[0], shard_out[0],
atol=1e-4), f"shard model output is not equal to orgin model output\n{org_out[0]}\n{shard_out[0]}"
def check_backward(org_model, sharded_model):
# prepare input
input = 'Hello, my dog is cute'
tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
del tokenized_input["token_type_ids"]
del tokenized_input["attention_mask"]
labels = tokenized_input['input_ids'].clone()
labels[labels == tokenizer.pad_token_id] = -100
tokenized_input['labels'] = labels
#orgin model
org_model.train()
org_out = org_model(**tokenized_input)
org_loss = org_out.loss
org_loss.backward()
org_grad = org_model.model.layers[0].self_attn.q_proj.weight.grad
torch.cuda.empty_cache()
#shard model
sharded_model.train()
shard_out = sharded_model(**tokenized_input)
shard_loss = shard_out.loss
shard_loss.backward()
shard_grad = sharded_model.model.layers[0].self_attn.q_proj.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_loss, shard_loss,
atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
def check_llama(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
org_model, sharded_model = build_model(rank, world_size)
check_forward(org_model, sharded_model)
check_backward(org_model, sharded_model)
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_llama():
spawn(check_llama, 4)
if __name__ == "__main__":
test_llama()