mirror of https://github.com/hpcaitech/ColossalAI
remove all to all
parent
5a310b9ee1
commit
6a20f07b80
|
@ -55,7 +55,7 @@ def cast_from_fp8(inp: torch.Tensor, scale_inv: torch.Tensor, ret_type: torch.dt
|
|||
return ret.to(ret_type)
|
||||
|
||||
|
||||
def all_reduce_fp8(tensor: torch.Tensor, fp8_format="e4m3", group=None) -> None:
|
||||
def all_reduce_fp8(tensor: torch.Tensor, fp8_format="e5m2", group=None) -> None:
|
||||
r"""
|
||||
This is an in-place operation for compressed all_reduce using fp8.
|
||||
It works like dist.all_reduce but during communication the data is cast to fp8 format.
|
||||
|
@ -167,7 +167,7 @@ def cast_from_fp8_pipeline(inp: Any, del_metadata=True) -> None:
|
|||
del inp["fp8_scale"]
|
||||
|
||||
|
||||
def reduce_scatter_fp8(output: torch.Tensor, input_list, group, fp8_format="e4m3") -> None:
|
||||
def reduce_scatter_fp8(output: torch.Tensor, input_list, group, fp8_format="e5m2") -> None:
|
||||
r"""
|
||||
This is an in-place operation for compressed reduce_scatter using fp8.
|
||||
It works like dist.reduce_scatter but during communication the data is cast to fp8 format.
|
||||
|
|
|
@ -170,7 +170,7 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
|
|||
if ctx.async_grad_allreduce:
|
||||
handle.wait()
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None, None, None
|
||||
return grad_input, grad_weight, grad_bias, None, None, None
|
||||
|
||||
|
||||
def _ring_as_gather(func, input_to_gather=None, input_local=None, process_group=None, gather_dim=1, keep_item=False):
|
||||
|
@ -261,7 +261,7 @@ class _GatherForwardReduceScatterBackward(torch.autograd.Function):
|
|||
|
||||
dist.reduce_scatter(output, grad_list, group=process_group)
|
||||
|
||||
return output, None, None, None
|
||||
return output, None, None
|
||||
|
||||
|
||||
class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
|
||||
|
@ -729,7 +729,7 @@ class _SplitForwardGatherBackward(torch.autograd.Function):
|
|||
grad_output = grad_output * ctx.grad_scale
|
||||
|
||||
# to_cast.append(grad_output.cpu().detach().numpy())
|
||||
return _gather(grad_output, ctx.dim, ctx.process_group, ctx.fp8_communication, "e4m3"), None, None, None, None
|
||||
return _gather(grad_output, ctx.dim, ctx.process_group, ctx.fp8_communication), None, None, None, None
|
||||
|
||||
|
||||
class _ReduceForward(torch.autograd.Function):
|
||||
|
@ -786,7 +786,7 @@ class _GatherForwardSplitBackward(torch.autograd.Function):
|
|||
ctx.dim = dim
|
||||
ctx.grad_scale = grad_scale
|
||||
|
||||
return _gather(input_, dim, process_group, fp8_communication=fp8_communication, fp8_format="e4m3")
|
||||
return _gather(input_, dim, process_group, fp8_communication=fp8_communication)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
|
@ -806,67 +806,26 @@ class _AllToAll(torch.autograd.Function):
|
|||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, process_group, scatter_dim, gather_dim, fp8_communication):
|
||||
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
|
||||
ctx.process_group = process_group
|
||||
ctx.scatter_dim = scatter_dim
|
||||
ctx.gather_dim = gather_dim
|
||||
ctx.fp8_communication = fp8_communication
|
||||
world_size = dist.get_world_size(process_group)
|
||||
bsz, _, _ = input_.shape
|
||||
|
||||
# using all_to_all_single when batch size is 1
|
||||
if bsz == 1:
|
||||
return _all_to_all_single(
|
||||
input_,
|
||||
world_size,
|
||||
process_group,
|
||||
scatter_dim,
|
||||
gather_dim,
|
||||
fp8_communication=fp8_communication,
|
||||
fp8_format="e5m2",
|
||||
)
|
||||
return _all_to_all_single(input_, world_size, process_group, scatter_dim, gather_dim)
|
||||
else:
|
||||
return _all_to_all(
|
||||
input_,
|
||||
world_size,
|
||||
process_group,
|
||||
scatter_dim,
|
||||
gather_dim,
|
||||
fp8_communication=fp8_communication,
|
||||
fp8_format="e5m2",
|
||||
)
|
||||
return _all_to_all(input_, world_size, process_group, scatter_dim, gather_dim)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
def backward(ctx, *grad_output):
|
||||
process_group = ctx.process_group
|
||||
scatter_dim = ctx.gather_dim
|
||||
gather_dim = ctx.scatter_dim
|
||||
fp8_communication = ctx.fp8_communication
|
||||
world_size = dist.get_world_size(process_group)
|
||||
bsz, _, _ = grad_output.shape
|
||||
|
||||
if bsz == 1:
|
||||
return_grad = _all_to_all_single(
|
||||
grad_output,
|
||||
world_size,
|
||||
process_group,
|
||||
scatter_dim,
|
||||
gather_dim,
|
||||
fp8_communication=fp8_communication,
|
||||
fp8_format="e5m2",
|
||||
)
|
||||
else:
|
||||
return_grad = _all_to_all(
|
||||
grad_output,
|
||||
world_size,
|
||||
process_group,
|
||||
scatter_dim,
|
||||
gather_dim,
|
||||
fp8_communication=fp8_communication,
|
||||
fp8_format="e5m2",
|
||||
)
|
||||
|
||||
return (return_grad, None, None, None, None)
|
||||
return_grad = _AllToAll.apply(*grad_output, process_group, scatter_dim, gather_dim)
|
||||
return (return_grad, None, None, None)
|
||||
|
||||
|
||||
class HookParameter(torch.autograd.Function):
|
||||
|
@ -924,41 +883,20 @@ def _split(input_, dim=-1, process_group=None):
|
|||
return output
|
||||
|
||||
|
||||
def _gather(input_, dim=-1, process_group=None, fp8_communication=False, fp8_format="e4m3"):
|
||||
def _gather(input_, dim=-1, process_group=None, fp8_communication=False, fp8_format="e5m2"):
|
||||
# skip if only one rank involved
|
||||
world_size = dist.get_world_size(process_group)
|
||||
if world_size == 1:
|
||||
return input_
|
||||
|
||||
# all gather
|
||||
import torch.distributed as dista
|
||||
|
||||
from colossalai.zero.low_level._utils import has_inf_or_nan
|
||||
|
||||
if fp8_communication:
|
||||
# if False:
|
||||
if has_inf_or_nan(input_):
|
||||
print("input has nan")
|
||||
exit(0)
|
||||
input_type = input_.dtype
|
||||
ret, scale = cast_to_fp8(input_, fp8_format="e5m2")
|
||||
if has_inf_or_nan(ret):
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
print("cast has nan")
|
||||
# exit(0)
|
||||
dista.barrier()
|
||||
ret, scale = cast_to_fp8(input_, fp8_format=fp8_format)
|
||||
fp8_type = ret.dtype
|
||||
input_ = ret.view(torch.uint8)
|
||||
input_ = input_.contiguous()
|
||||
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
||||
scale = torch.tensor(scale, dtype=torch.float32).to(input_.device)
|
||||
# import torch.distributed as dista
|
||||
# if dista.get_rank()==0:
|
||||
# import pdb
|
||||
# pdb.set_trace()
|
||||
# dista.barrier()
|
||||
scale_list = [torch.ones(1, dtype=torch.float32, device=input_.device) for _ in range(world_size)]
|
||||
|
||||
scale = torch.tensor(scale).to(input_.device)
|
||||
|
@ -969,24 +907,10 @@ def _gather(input_, dim=-1, process_group=None, fp8_communication=False, fp8_for
|
|||
for output, scale in zip(tensor_list, scale_list):
|
||||
output = output.view(fp8_type)
|
||||
output = cast_from_fp8(output, scale, input_type)
|
||||
if has_inf_or_nan(output) and dista.get_rank() == 0:
|
||||
print("casted_output has nan")
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
dista.barrier()
|
||||
|
||||
cast_tensor_list.append(output)
|
||||
|
||||
output = torch.cat(cast_tensor_list, dim=dim).contiguous()
|
||||
|
||||
if has_inf_or_nan(output):
|
||||
print("output has nan")
|
||||
exit(0)
|
||||
# import pdb
|
||||
# pdb.set_trace()
|
||||
dista.barrier()
|
||||
|
||||
else:
|
||||
input_ = input_.contiguous()
|
||||
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
||||
|
@ -1020,33 +944,14 @@ def _reduce_scatter(input_, dim=1, process_group=None):
|
|||
return output
|
||||
|
||||
|
||||
def _all_to_all(input_, world_size, group, scatter_dim, gather_dim, fp8_communication=False, fp8_format="e5m2"):
|
||||
if fp8_communication:
|
||||
input_type = input_.dtype
|
||||
ret, scale = cast_to_fp8(input_, fp8_format=fp8_format)
|
||||
fp8_type = ret.dtype
|
||||
input_ = ret.view(torch.uint8)
|
||||
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
|
||||
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
|
||||
scale_list = [torch.ones(1, dtype=scale.dtype, device=input_.device) for _ in range(world_size)]
|
||||
dist.all_to_all(output_list, input_list, group=group)
|
||||
dist.all_gather(scale_list, scale, group=group)
|
||||
cast_tensor_list = []
|
||||
for output, scale in zip(output_list, scale_list):
|
||||
output = output.view(fp8_type)
|
||||
output = cast_from_fp8(output, scale, input_type)
|
||||
cast_tensor_list.append(output)
|
||||
output_list = cast_tensor_list
|
||||
else:
|
||||
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
|
||||
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
|
||||
dist.all_to_all(output_list, input_list, group=group)
|
||||
def _all_to_all(input_, world_size, group, scatter_dim, gather_dim):
|
||||
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
|
||||
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
|
||||
dist.all_to_all(output_list, input_list, group=group)
|
||||
return torch.cat(output_list, dim=gather_dim).contiguous()
|
||||
|
||||
|
||||
def _all_to_all_single(
|
||||
input_, seq_world_size, group, scatter_dim, gather_dim, fp8_communication=False, fp8_format="e5m2"
|
||||
):
|
||||
def _all_to_all_single(input_, seq_world_size, group, scatter_dim, gather_dim):
|
||||
inp_shape = list(input_.shape)
|
||||
inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
|
||||
if scatter_dim < 2:
|
||||
|
@ -1058,24 +963,8 @@ def _all_to_all_single(
|
|||
.contiguous()
|
||||
)
|
||||
|
||||
if fp8_communication:
|
||||
input_type = input_t.dtype
|
||||
ret, scale = cast_to_fp8(input_t, fp8_format=fp8_format)
|
||||
fp8_type = ret.dtype
|
||||
input_t = ret.view(torch.uint8)
|
||||
output = torch.empty_like(input_t)
|
||||
scale_list = [torch.ones(1, dtype=scale.dtype, device=input_.device) for _ in range(seq_world_size)]
|
||||
dist.all_to_all_single(output, input_t, group=group)
|
||||
dist.all_gather(scale_list, scale, group=group)
|
||||
cast_tensor_list = []
|
||||
for output_part, scale in zip(output, scale_list):
|
||||
output_part = output_part.view(fp8_type)
|
||||
output_part = cast_from_fp8(output_part, scale, input_type)
|
||||
cast_tensor_list.append(output_part)
|
||||
output = torch.stack(cast_tensor_list, dim=0)
|
||||
else:
|
||||
output = torch.empty_like(input_t)
|
||||
dist.all_to_all_single(output, input_t, group=group)
|
||||
output = torch.empty_like(input_t)
|
||||
dist.all_to_all_single(output, input_t, group=group)
|
||||
|
||||
if scatter_dim < 2:
|
||||
output = output.transpose(0, 1).contiguous()
|
||||
|
@ -1143,5 +1032,5 @@ def reduce_backward(input_, process_group, fp8_communication=False):
|
|||
return _ReduceBackward.apply(input_, process_group, fp8_communication)
|
||||
|
||||
|
||||
def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1, fp8_communication=False):
|
||||
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim, fp8_communication)
|
||||
def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1):
|
||||
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim)
|
||||
|
|
|
@ -84,7 +84,6 @@ class Linear1D_Col(ParallelModule):
|
|||
bias_: Optional[Parameter] = None,
|
||||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
fp8_communication: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(weight=weight, bias_=bias_, **kwargs)
|
||||
|
@ -99,7 +98,6 @@ class Linear1D_Col(ParallelModule):
|
|||
self.skip_bias_add = skip_bias_add
|
||||
self.device = device
|
||||
self.process_group = process_group
|
||||
self.fp8_communication = fp8_communication
|
||||
|
||||
if skip_bias_add and not bias:
|
||||
raise ValueError("cannot skip bias addition if bias is None")
|
||||
|
@ -203,12 +201,10 @@ class Linear1D_Col(ParallelModule):
|
|||
bias = self.bias if not self.skip_bias_add else None
|
||||
|
||||
if self.seq_parallel_mode is None:
|
||||
output_parallel = linear_with_async_comm(
|
||||
input_parallel, self.weight, bias, self.process_group, True, fp8_communication=self.fp8_communication
|
||||
)
|
||||
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
|
||||
elif self.seq_parallel_mode == "split_gather":
|
||||
input_parallel = gather_forward_reducescatter_backward(
|
||||
input_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
|
||||
input_parallel, self.process_group, self.seq_parallel_dim
|
||||
)
|
||||
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, False)
|
||||
elif self.seq_parallel_mode == "ring":
|
||||
|
@ -268,7 +264,6 @@ class Linear1D_Row(ParallelModule):
|
|||
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
||||
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
|
||||
stream_chunk_num: int = 1,
|
||||
fp8_communication: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -283,7 +278,6 @@ class Linear1D_Row(ParallelModule):
|
|||
self.seq_parallel_mode = seq_parallel_mode
|
||||
self.seq_parallel_dim = seq_parallel_dim
|
||||
self.num_partitions = dist.get_world_size(self.process_group)
|
||||
self.fp8_communication = fp8_communication
|
||||
|
||||
if skip_bias_add and not bias:
|
||||
raise ValueError("cannot skip bias addition if bias is None")
|
||||
|
@ -404,9 +398,7 @@ class Linear1D_Row(ParallelModule):
|
|||
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format(
|
||||
input_.shape, self.weight.shape, self.weight.shape[-1] * self.num_partitions
|
||||
)
|
||||
input_ = split_forward_gather_backward(
|
||||
input_, dim=-1, process_group=self.process_group, fp8_comm=self.fp8_communication
|
||||
)
|
||||
input_ = split_forward_gather_backward(input_, dim=-1, process_group=self.process_group)
|
||||
|
||||
if self.stream_chunk_num > 1:
|
||||
if self.training:
|
||||
|
@ -426,11 +418,11 @@ class Linear1D_Row(ParallelModule):
|
|||
else:
|
||||
if self.seq_parallel_mode is None:
|
||||
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
|
||||
output = reduce_forward(output_parallel, self.process_group, fp8_communication=self.fp8_communication)
|
||||
output = reduce_forward(output_parallel, self.process_group)
|
||||
elif self.seq_parallel_mode == "split_gather":
|
||||
output_parallel = linear_with_async_comm(input_, self.weight, None, self.process_group, False)
|
||||
output = reducescatter_forward_gather_backward(
|
||||
output_parallel, self.process_group, self.seq_parallel_dim, fp8_communication=self.fp8_communication
|
||||
output_parallel, self.process_group, self.seq_parallel_dim
|
||||
)
|
||||
elif self.seq_parallel_mode == "ring":
|
||||
output = linear_reducescatter_forward_gather_backward(
|
||||
|
|
|
@ -460,7 +460,7 @@ class LlamaPipelineForwards:
|
|||
return {"hidden_states": hidden_states}
|
||||
|
||||
|
||||
def get_llama_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, sp_size=None, sp_group=None):
|
||||
def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
@ -592,7 +592,7 @@ def get_llama_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, s
|
|||
return forward
|
||||
|
||||
|
||||
def get_llama_flash_attention_model_forward(shard_config: ShardConfig, sp_mode=None, sp_size=None, sp_group=None):
|
||||
def get_llama_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
def forward(
|
||||
|
@ -659,18 +659,9 @@ def get_llama_flash_attention_model_forward(shard_config: ShardConfig, sp_mode=N
|
|||
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
||||
|
||||
if sp_mode in ["ring", "split_gather"]:
|
||||
inputs_embeds = split_forward_gather_backward(
|
||||
inputs_embeds,
|
||||
1,
|
||||
sp_group,
|
||||
)
|
||||
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
|
||||
elif sp_mode == "all_to_all":
|
||||
inputs_embeds = split_forward_gather_backward(
|
||||
inputs_embeds,
|
||||
1,
|
||||
sp_group,
|
||||
1 / sp_size,
|
||||
)
|
||||
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
|
@ -715,18 +706,9 @@ def get_llama_flash_attention_model_forward(shard_config: ShardConfig, sp_mode=N
|
|||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
if sp_mode == "ring" or sp_mode == "split_gather":
|
||||
hidden_states = gather_forward_split_backward(
|
||||
hidden_states,
|
||||
1,
|
||||
sp_group,
|
||||
)
|
||||
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
|
||||
elif sp_mode == "all_to_all":
|
||||
hidden_states = gather_forward_split_backward(
|
||||
hidden_states,
|
||||
1,
|
||||
sp_group,
|
||||
grad_scale=sp_size,
|
||||
)
|
||||
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
|
|
|
@ -218,11 +218,8 @@ def main():
|
|||
elif args.plugin == "hybrid_parallel":
|
||||
# modify the param accordingly for finetuning test cases
|
||||
plugin = HybridParallelPlugin(
|
||||
tp_size=2,
|
||||
pp_size=1,
|
||||
sp_size=1,
|
||||
# sequence_parallelism_mode="split_gather",
|
||||
# enable_sequence_parallelism=True,
|
||||
tp_size=1,
|
||||
pp_size=2,
|
||||
num_microbatches=None,
|
||||
microbatch_size=1,
|
||||
enable_all_optimization=True,
|
||||
|
|
Loading…
Reference in New Issue