Browse Source

[context]support arbitary module materialization. (#1193)

* [CLI] add CLI launcher

* Revert "[CLI] add CLI launcher"

This reverts commit df7e6506d4.

* [context]support arbitary module materialization.

* [test]add numerical check for lazy init context.
pull/1197/head
YuliangLiu0306 2 years ago committed by GitHub
parent
commit
63d2a93878
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 91
      colossalai/utils/model/lazy_init_context.py
  2. 14
      tests/test_utils/test_lazy_init_ctx.py
  3. 55
      tests/test_utils/test_materialize_arbitary_lazy_module.py

91
colossalai/utils/model/lazy_init_context.py

@ -8,6 +8,7 @@ import inspect
import typing
from typing import List, Callable
from colossalai.utils.model.utils import substitute_init_recursively
import copy
class LazyInitContext():
@ -102,7 +103,8 @@ class LazyInitContext():
has_device = 'device' in inspect.signature(func).parameters
def layer_lazy_init(module, *args, **kwargs):
self._intercepted_init_func_cache.append(dict(func=func, module=module, args=args, kwargs=kwargs))
self._intercepted_init_func_cache.append(
dict(func=func, module=module, args=args, kwargs=copy.deepcopy(kwargs)))
if has_device:
kwargs['device'] = 'meta'
func(module, *args, **kwargs)
@ -162,6 +164,12 @@ class LazyInitContext():
def __exit__(self, *args, **kwargs):
self._unpatch_submodule_init()
# build model_rebuild_dict in reverse order to make sure get correct init func for inherited class.
self.module_rebuild_dict = {}
self._intercepted_init_func_cache.reverse()
for cache in self._intercepted_init_func_cache:
self.module_rebuild_dict[cache['module']] = (cache['func'], cache['args'], cache['kwargs'])
self._intercepted_init_func_cache.reverse()
def lazy_init_parameters(self, model: torch.nn.Module, device='cpu', call_back: Callable = None):
"""
@ -179,7 +187,34 @@ class LazyInitContext():
for name, buffer in model.named_buffers():
param_id_to_name[id(buffer)] = name
assert model in self.module_rebuild_dict, 'We only support rebuild modules which intercepted during initializing by us.'
def _process_arg(arg):
"""
Process args recursively. If arg is a torch.nn.Module instance in module_rebuild_dict,
we need to rebuild it with real parameters. If arg is a tuple or list, we will process
the element of arg with this function again.
"""
if torch.is_tensor(arg):
tensor_id = id(arg)
if tensor_id in param_id_to_name:
arg = _replace_meta_param_with_real_param(arg)
elif isinstance(arg, torch.nn.Module):
if arg in self.module_rebuild_dict:
arg = self.lazy_init_parameters(model=arg, device=device, call_back=call_back)
elif isinstance(arg, (tuple, list)):
rst_list = []
for element in arg:
processed_element = _process_arg(element)
rst_list.append(processed_element)
arg = rst_list
return arg
def _replace_meta_param_with_real_param(meta_param):
if meta_param.device != 'meta':
return meta_param
tensor_id = id(meta_param)
param_full_name = param_id_to_name[tensor_id]
real_param = torch.empty_like(meta_param, dtype=meta_param.dtype, device=device)
@ -199,36 +234,24 @@ class LazyInitContext():
call_back(real_param)
return real_param
# build modules
# visit the cache list in reverse order
for index in range(len(self._intercepted_init_func_cache)):
cache = self._intercepted_init_func_cache[len(self._intercepted_init_func_cache) - index - 1]
func = cache['func']
module = cache['module']
args = list(cache['args'])
kwargs = cache['kwargs']
# check args for parameter replacement
for idx, arg in enumerate(args):
if torch.is_tensor(arg):
tensor_id = id(arg)
if tensor_id not in param_id_to_name:
continue
else:
arg = _replace_meta_param_with_real_param(arg)
args[idx] = arg
# check kwargs for parameter replacement
for arg_name, arg in enumerate(kwargs):
if torch.is_tensor(arg):
tensor_id = id(arg)
if tensor_id not in param_id_to_name:
continue
else:
arg = _replace_meta_param_with_real_param(arg)
kwargs[arg_name] = arg
with torch.no_grad():
func(module, *args, **kwargs)
func, args, kwargs = self.module_rebuild_dict[model]
args = list(args)
# check args for parameter replacement
for idx, arg in enumerate(args):
arg = _process_arg(arg)
args[idx] = arg
# check kwargs for parameter replacement
for arg_name, arg in kwargs.items():
if arg_name == 'device':
arg = device
else:
arg = _process_arg(arg)
kwargs[arg_name] = arg
# build user specified model
with torch.no_grad():
func(model, *args, **kwargs)
return model

14
tests/test_utils/test_lazy_init_ctx.py

@ -1,9 +1,20 @@
import torch
from colossalai.utils.model.lazy_init_context import LazyInitContext
from torchvision.models import resnet34
import random
import numpy as np
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
def test_lazy_init():
cpu_rng_state = torch.get_rng_state()
origin_model = resnet34(num_classes=10)
origin_param_dict = dict(origin_model.named_parameters())
torch.set_rng_state(cpu_rng_state)
ctx = LazyInitContext()
with ctx:
model = resnet34(num_classes=10)
@ -16,6 +27,9 @@ def test_lazy_init():
assert not param.is_meta
for buffer in model.buffers():
assert not buffer.is_meta
param_dict = dict(model.named_parameters())
for key in origin_param_dict.keys():
assert origin_param_dict[key].data.equal(param_dict[key].data)
if __name__ == '__main__':

55
tests/test_utils/test_materialize_arbitary_lazy_module.py

@ -0,0 +1,55 @@
import torch
from colossalai.utils.model.lazy_init_context import LazyInitContext
from torchvision.models import resnet34
import random
import numpy as np
MANUAL_SEED = 0
random.seed(MANUAL_SEED)
np.random.seed(MANUAL_SEED)
torch.manual_seed(MANUAL_SEED)
class MLP(torch.nn.Module):
def __init__(self, dim: int = 4):
super().__init__()
intermediate_dim = dim * 4
self.dense_1 = torch.nn.Linear(dim, intermediate_dim)
self.activation = torch.nn.GELU()
self.dense_2 = torch.nn.Linear(intermediate_dim, dim)
self.dropout = torch.nn.Dropout(0.1)
def forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
x = self.dense_2(x)
x = self.dropout(x)
return x
def test_lazy_init():
cpu_rng_state = torch.get_rng_state()
origin_model = MLP()
origin_param_dict = dict(origin_model.named_parameters())
torch.set_rng_state(cpu_rng_state)
ctx = LazyInitContext()
with ctx:
model = MLP()
for param in model.parameters():
assert param.is_meta
for buffer in model.buffers():
assert buffer.is_meta
for module in model.children():
ctx.lazy_init_parameters(module)
for param in module.parameters():
assert not param.is_meta
for buffer in module.buffers():
assert not buffer.is_meta
param_dict = dict(model.named_parameters())
for key in origin_param_dict.keys():
assert origin_param_dict[key].data.equal(param_dict[key].data)
if __name__ == '__main__':
test_lazy_init()
Loading…
Cancel
Save