mirror of https://github.com/hpcaitech/ColossalAI
[example] Palm adding gemini, still has bugs (#2221)
parent
7010e18134
commit
63cc77173b
|
@ -0,0 +1,6 @@
|
||||||
|
SEQ_LENGTH = 1024
|
||||||
|
BATCH_SIZE = 4
|
||||||
|
NUM_EPOCHS = 4
|
||||||
|
TPDEGREE = 2
|
||||||
|
USE_SHARD_INIT = False
|
||||||
|
placement = 'cpu'
|
|
@ -47,7 +47,9 @@ class RotaryEmbedding(nn.Module):
|
||||||
def forward(self, max_seq_len, *, device):
|
def forward(self, max_seq_len, *, device):
|
||||||
seq = torch.arange(max_seq_len, device=device)
|
seq = torch.arange(max_seq_len, device=device)
|
||||||
#freqs = einsum("i , j -> i j", seq.type_as(self.inv_freq), self.inv_freq)
|
#freqs = einsum("i , j -> i j", seq.type_as(self.inv_freq), self.inv_freq)
|
||||||
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
#freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
||||||
|
i, j = len(seq.type_as(self.inv_freq)), len(self.inv_freq)
|
||||||
|
freqs = matmul(seq.type_as(self.inv_freq).reshape(i, 1), self.inv_freq.reshape(1, j))
|
||||||
return torch.cat((freqs, freqs), dim=-1)
|
return torch.cat((freqs, freqs), dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1 @@
|
||||||
|
env OMP_NUM_THREADS=12 torchrun --nproc_per_node 8 --master_port 29501 train.py --config palm_config.py
|
|
@ -9,6 +9,16 @@ from palm_pytorch import PaLM
|
||||||
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
|
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from torch.utils.data import DataLoader, Dataset
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
|
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
||||||
|
from colossalai.utils import MultiTimer, get_current_device
|
||||||
|
from colossalai.nn.parallel import ZeroDDP
|
||||||
|
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
|
||||||
|
from colossalai.nn.parallel import GeminiDDP
|
||||||
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||||
|
|
||||||
# constants
|
# constants
|
||||||
|
|
||||||
|
@ -20,6 +30,9 @@ VALIDATE_EVERY = 100
|
||||||
GENERATE_EVERY = 500
|
GENERATE_EVERY = 500
|
||||||
GENERATE_LENGTH = 512
|
GENERATE_LENGTH = 512
|
||||||
SEQ_LEN = 1024
|
SEQ_LEN = 1024
|
||||||
|
TPDEGREE = 2
|
||||||
|
USE_SHARD_INIT = False
|
||||||
|
placement = 'cpu'
|
||||||
|
|
||||||
# helpers
|
# helpers
|
||||||
|
|
||||||
|
@ -37,16 +50,55 @@ def decode_token(token):
|
||||||
def decode_tokens(tokens):
|
def decode_tokens(tokens):
|
||||||
return "".join(list(map(decode_token, tokens)))
|
return "".join(list(map(decode_token, tokens)))
|
||||||
|
|
||||||
|
# Gemini + ZeRO DDP
|
||||||
|
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
|
||||||
|
cai_version = colossalai.__version__
|
||||||
|
if version.parse(cai_version) > version.parse("0.1.10"):
|
||||||
|
from colossalai.nn.parallel import GeminiDDP
|
||||||
|
model = GeminiDDP(model,
|
||||||
|
device=get_current_device(),
|
||||||
|
placement_policy=placememt_policy,
|
||||||
|
pin_memory=True,
|
||||||
|
search_range_mb=32)
|
||||||
|
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
|
||||||
|
from colossalai.gemini import ChunkManager, GeminiManager
|
||||||
|
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
|
||||||
|
gemini_manager = GeminiManager(placememt_policy, chunk_manager)
|
||||||
|
chunk_manager = ChunkManager(chunk_size,
|
||||||
|
pg,
|
||||||
|
enable_distributed_storage=True,
|
||||||
|
init_device=GeminiManager.get_default_device(placememt_policy))
|
||||||
|
model = ZeroDDP(model, gemini_manager)
|
||||||
|
else:
|
||||||
|
raise NotImplemented(f"CAI version {cai_version} is not supported")
|
||||||
|
return model
|
||||||
|
|
||||||
|
# instantiate GPT-like decoder model
|
||||||
|
|
||||||
|
parser = colossalai.get_default_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
disable_existing_loggers()
|
||||||
|
colossalai.launch_from_torch(config=args.config, seed=42)
|
||||||
|
|
||||||
|
|
||||||
# instantiate GPT-like decoder model
|
# instantiate GPT-like decoder model
|
||||||
|
|
||||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
default_pg = ProcessGroup(tp_degree=TPDEGREE)
|
||||||
|
default_dist_spec = ShardSpec([-1], [TPDEGREE]) if USE_SHARD_INIT else None
|
||||||
|
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
|
||||||
|
with ctx:
|
||||||
|
model = PaLM(num_tokens=256,dim=512,depth=8)
|
||||||
|
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||||
|
model.cuda()
|
||||||
|
|
||||||
model = AutoregressiveWrapper(model, max_seq_len=2048)
|
|
||||||
model.cuda()
|
|
||||||
|
|
||||||
# prepare enwik8 data
|
# prepare enwik8 data
|
||||||
|
|
||||||
|
# model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||||
|
|
||||||
|
# model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
|
||||||
|
# model.cuda()
|
||||||
|
|
||||||
with gzip.open("./data/enwik8.gz") as file:
|
with gzip.open("./data/enwik8.gz") as file:
|
||||||
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||||||
trX, vaX = np.split(X, [int(90e6)])
|
trX, vaX = np.split(X, [int(90e6)])
|
||||||
|
@ -74,9 +126,20 @@ val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
||||||
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
|
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
|
||||||
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
||||||
|
|
||||||
# optimizer
|
#tensor_parallelize(model, pg)
|
||||||
|
|
||||||
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
pg = default_pg
|
||||||
|
# model = GeminiDDP(model,
|
||||||
|
# device=get_current_device(),
|
||||||
|
# placement_policy="auto",
|
||||||
|
# pin_memory=True,
|
||||||
|
# search_range_mb=32)
|
||||||
|
model = gemini_zero_dpp(model, pg, placement)
|
||||||
|
|
||||||
|
#optimizer
|
||||||
|
|
||||||
|
optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
|
||||||
|
#optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||||||
|
|
||||||
# training
|
# training
|
||||||
|
|
||||||
|
@ -89,8 +152,10 @@ for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
||||||
|
|
||||||
print(f"training loss: {loss.item()}")
|
print(f"training loss: {loss.item()}")
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||||
optim.step()
|
# optim.step()
|
||||||
optim.zero_grad()
|
# optim.zero_grad()
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
if i % VALIDATE_EVERY == 0:
|
if i % VALIDATE_EVERY == 0:
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
Loading…
Reference in New Issue