Browse Source

Merge pull request #5818 from GuangyaoZhang/command-r

[shardformer] Support the Command-R model
pull/5832/head
Guangyao Zhang 5 months ago committed by GitHub
parent
commit
639394b0d4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 37
      colossalai/shardformer/layer/normalization.py
  2. 692
      colossalai/shardformer/modeling/command.py
  3. 7
      colossalai/shardformer/policies/auto_policy.py
  4. 2
      colossalai/shardformer/policies/bert.py
  5. 2
      colossalai/shardformer/policies/bloom.py
  6. 2
      colossalai/shardformer/policies/chatglm2.py
  7. 369
      colossalai/shardformer/policies/command.py
  8. 2
      colossalai/shardformer/policies/gpt2.py
  9. 8
      colossalai/shardformer/policies/llama.py
  10. 6
      tests/kit/model_zoo/transformers/__init__.py
  11. 79
      tests/kit/model_zoo/transformers/command.py
  12. 322
      tests/test_shardformer/test_model/test_shard_command.py

37
colossalai/shardformer/layer/normalization.py

@ -140,32 +140,29 @@ class RMSNorm(BaseLayerNorm):
class LayerNorm(BaseLayerNorm):
r"""
This is a wrapper around the torch.nn.LayerNorm. It is meant to be used only with the from_native_module interface.
This is a wrapper around native LayerNorm. It is meant to be used only with the from_native_module interface.
"""
def __init__(self) -> None:
raise NotImplementedError(
"LayerNorm is not implemented as a physical class. "
"It is meant to be used only with the from_native_module interface to convert a native pytorch layer norm module to colossalai layer norm module."
"It is meant to be used only with the from_native_module interface to convert a native LayerNorm module to colossalai layer norm module."
)
@staticmethod
def from_native_module(module: nn.LayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
def from_native_module(module: nn.Module, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
r"""
Convert a native pytorch layer norm module to colossalai layer norm module,
Convert a native LayerNorm module to colossalai layer norm module,
and optionally marking parameters for gradient aggregation.
Args:
module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted.
module (nn.Module): The native LayerNorm module to be converted.
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
Returns:
nn.Module: The LayerNorm module.
nn.Module: The colossalai LayerNorm module.
Raises:
AssertionError: If the provided module is not an instance of nn.LayerNorm.
"""
assert isinstance(module, nn.LayerNorm), "Only support conversion from nn.LayerNorm."
LazyInitContext.materialize(module)
@ -174,7 +171,8 @@ class LayerNorm(BaseLayerNorm):
# aggregation of these gradients is necessary during backpropagation.
# Therefore, we annotate these parameters in advance to indicate the need for gradient aggregation.
SeqParallelUtils.marked_as_sp_partial_derived_param(module.weight)
SeqParallelUtils.marked_as_sp_partial_derived_param(module.bias)
if module.bias is not None:
SeqParallelUtils.marked_as_sp_partial_derived_param(module.bias)
return module
@ -187,31 +185,29 @@ class FusedLayerNorm(BaseLayerNorm):
def __init__(self) -> None:
raise NotImplementedError(
"FusedLayerNorm is not implemented as a physical class. "
"It is meant to be used only with the from_native_module interface convert a native pytorch layer norm module to FusedLayerNorm module provided by apex."
"It is meant to be used only with the from_native_module interface convert a native LayerNorm module to FusedLayerNorm module provided by apex."
)
@staticmethod
def from_native_module(module: nn.LayerNorm, sp_partial_derived: bool = False, *args, **kwargs) -> nn.Module:
r"""
Convert a native pytorch layer norm module to FusedLayerNorm module provided by apex,
Convert a native LayerNorm module to FusedLayerNorm module provided by apex,
and optionally marking parameters for gradient aggregation.
Args:
module (nn.LayerNorm): The native PyTorch LayerNorm module to be converted.
module (nn.Module): The native LayerNorm module to be converted.
sp_partial_derived (bool): Whether this module's gradients are partially derived in sequence parallelism.
Returns:
nn.Module: Union[FastLayerNorm, FusedLayerNorm].
Raises:
AssertionError: If the provided module is not an instance of nn.LayerNorm.
"""
LazyInitContext.materialize(module)
# get the attributes of the module
normalized_shape = module.normalized_shape
eps = module.eps
elementwise_affine = module.elementwise_affine
normalized_shape = getattr(module, "normalized_shape", module.weight.shape[0])
eps = module.variance_epsilon if hasattr(module, "variance_epsilon") else module.eps
elementwise_affine = getattr(module, "elementwise_affine", True)
dtype = module.weight.dtype
device = module.weight.device
@ -229,7 +225,7 @@ class FusedLayerNorm(BaseLayerNorm):
ApexFusedLayerNorm = FusedLayerNormWithHook
except NameError:
warnings.warn(
"Please install Apex from source to use fused kernels, or set self.enable_fused_normalization = False. Using vanilla layernorm instead."
"Please install Apex from source to use fused kernels, or set self.enable_fused_normalization = False. Using native layernorm instead."
)
return module
@ -237,7 +233,8 @@ class FusedLayerNorm(BaseLayerNorm):
ApexFusedLayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine).to(dtype).to(device)
)
layernorm.weight = module.weight
layernorm.bias = module.bias
if module.bias is not None:
layernorm.bias = module.bias
if sp_partial_derived:
# Since gradients are computed using only a subset of the data,

692
colossalai/shardformer/modeling/command.py

@ -0,0 +1,692 @@
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.cohere.modeling_cohere import (
CohereForCausalLM,
CohereModel,
StaticCache,
apply_rotary_pos_emb,
repeat_kv,
)
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.layer._operation import (
all_to_all_comm,
gather_forward_split_backward,
split_forward_gather_backward,
)
from colossalai.shardformer.shard import ShardConfig
from ..layer import ColoAttention, cross_entropy_1d
class CommandPipelineForwards:
"""
This class serves as a micro library for forward function substitution of Command models
under pipeline setting.
"""
@staticmethod
def command_model_forward(
self: CohereModel,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
logger = logging.get_logger(__name__)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with pipeline parallelism. Setting `use_cache=False`..."
)
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if stage_manager.is_first_stage():
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
else:
input_shape = hidden_states.shape[:-1]
batch_size, seq_length = input_shape
device = hidden_states.device
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=device)
seq_length_with_past = seq_length + past_seen_tokens
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
if use_cache:
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
use_cache = False
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# embed positions, for the first stage, hidden_states is the input embeddings,
# for the other stages, hidden_states is the output of the previous stage
if shard_config.enable_flash_attention:
# in this case, attention_mask is a dict rather than a tensor
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape,
hidden_states.dtype,
hidden_states.device,
q_padding_mask=attention_mask,
is_causal=True,
)
else:
attention_mask = self._update_causal_mask(attention_mask, hidden_states, cache_position)
if self.gradient_checkpointing and self.training and use_cache:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
start_idx, end_idx = stage_index[0], stage_index[1]
num_ckpt_layers = 0
if self.gradient_checkpointing and self.training:
num_ckpt_layers = end_idx - start_idx
# TODO: We can replace `gradient_checkpointing_enable` fn and initialize a gradient_checkpointing (List[bool]) for each layer
if shard_config.gradient_checkpoint_config is not None:
num_ckpt_layers = shard_config.gradient_checkpoint_config.get_num_ckpt_layers(
stage=stage_manager.stage,
num_stages=stage_manager.num_stages,
num_layers=end_idx - start_idx,
model_chunk_id=(stage_manager.model_chunk_id if stage_manager.is_interleave else 0),
num_model_chunks=stage_manager.num_model_chunks,
)
assert num_ckpt_layers <= end_idx - start_idx
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if idx - start_idx < num_ckpt_layers:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if stage_manager.is_last_stage():
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if stage_manager.is_last_stage():
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_self_attns,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# always return dict for imediate stage
return {"hidden_states": hidden_states}
@staticmethod
def command_for_causal_lm_forward(
self: CohereForCausalLM,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, CohereForCausalLM
>>> model = CohereForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
logger = logging.get_logger(__name__)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
output_attentions = False
if output_hidden_states:
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
output_hidden_states = False
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = CommandPipelineForwards.command_model_forward(
self.model,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
shard_config=shard_config,
)
past_key_values = None
if stage_manager.is_last_stage():
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits * self.logit_scale
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
if shard_config.enable_tensor_parallelism and shard_config.parallel_output:
new_vocab_size = logits.shape[-1]
shift_logits = shift_logits.view(-1, new_vocab_size)
loss = cross_entropy_1d(
shift_logits,
shift_labels,
process_group=shard_config.tensor_parallel_process_group,
vocab_size=self.lm_head.out_features,
dtype=self.model.dtype,
)
else:
shift_logits = shift_logits.view(-1, self.config.vocab_size)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
else:
hidden_states = outputs.get("hidden_states")
return {"hidden_states": hidden_states}
def get_command_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if sp_mode is not None:
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode"
assert (sp_size is not None) and (
sp_group is not None
), "Must specify sp_size and sp_group for sequence parallel"
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
# sp: modify sp_len when sequence parallel mode is ring
if sp_mode in ["split_gather", "ring"]:
q_len *= sp_size
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
query_states = all_to_all_comm(query_states, sp_group)
key_states = all_to_all_comm(key_states, sp_group)
value_states = all_to_all_comm(value_states, sp_group)
bsz, q_len, _ = query_states.size()
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if shard_config.enable_flash_attention:
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
else:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
return forward
def get_command_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
logger = logging.get_logger(__name__)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
seq_len = inputs_embeds.shape[1]
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_len, device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# in this case, attention_mask is a dict rather than a tensor
if shard_config.enable_flash_attention:
mask_shape = (inputs_embeds.shape[0], 1, past_seen_tokens + seq_len, past_seen_tokens + seq_len)
attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape,
inputs_embeds.dtype,
inputs_embeds.device,
q_padding_mask=attention_mask,
is_causal=True,
)
else:
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
if sp_mode in ["ring", "split_gather"]:
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if sp_mode == "ring" or sp_mode == "split_gather":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
elif sp_mode == "all_to_all":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return forward
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
from transformers import CohereForCausalLM
def forward(
self: CohereForCausalLM,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, CohereForCausalLM
>>> model = CohereForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits * self.logit_scale
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
new_vocab_size = logits.shape[-1]
shift_logits = shift_logits.view(-1, new_vocab_size)
loss = cross_entropy_1d(
shift_logits,
shift_labels,
process_group=shard_config.tensor_parallel_process_group,
vocab_size=self.lm_head.out_features,
dtype=self.model.dtype,
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
return forward

7
colossalai/shardformer/policies/auto_policy.py

@ -192,6 +192,13 @@ _POLICY_LIST = {
"transformers.models.qwen2.modeling_qwen2.Qwen2ForSequenceClassification": PolicyLocation(
file_name="qwen2", class_name="Qwen2ForSequenceClassificationPolicy"
),
# Command-R
"transformers.models.cohere.modeling_cohere.CohereModel": PolicyLocation(
file_name="command", class_name="CommandModelPolicy"
),
"transformers.models.cohere.modeling_cohere.CohereForCausalLM": PolicyLocation(
file_name="command", class_name="CommandForCausalLMPolicy"
),
}

2
colossalai/shardformer/policies/bert.py

@ -67,7 +67,7 @@ class BertPolicy(Policy):
else:
norm_cls = col_nn.LayerNorm
sp_mode = self.shard_config.sequence_parallelism_mode if self.shard_config.enable_sequence_parallelism else None
sp_mode = self.shard_config.sequence_parallelism_mode or None
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for Bert"
if sp_mode == "ring":
warnings.warn(

2
colossalai/shardformer/policies/bloom.py

@ -50,7 +50,7 @@ class BloomPolicy(Policy):
else:
norm_cls = col_nn.LayerNorm
sp_mode = self.shard_config.sequence_parallelism_mode if self.shard_config.enable_sequence_parallelism else None
sp_mode = self.shard_config.sequence_parallelism_mode or None
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for BLOOM"
if sp_mode == "ring":
warnings.warn(

2
colossalai/shardformer/policies/chatglm2.py

@ -57,7 +57,7 @@ class ChatGLMPolicy(Policy):
else:
norm_cls = col_nn.LayerNorm
sp_mode = self.shard_config.sequence_parallelism_mode if self.shard_config.enable_sequence_parallelism else None
sp_mode = self.shard_config.sequence_parallelism_mode or None
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for ChatGLM2"
if sp_mode == "ring":
warnings.warn(

369
colossalai/shardformer/policies/command.py

@ -0,0 +1,369 @@
import warnings
from functools import partial
from typing import Callable, Dict, List, Union
import torch.nn as nn
from torch import Tensor
from torch.nn import Module
from colossalai.shardformer.layer import (
FusedLayerNorm,
LayerNorm,
Linear1D_Col,
Linear1D_Row,
PaddingEmbedding,
PaddingLMHead,
VocabParallelEmbedding1D,
VocabParallelLMHead1D,
)
from ..modeling.command import (
CommandPipelineForwards,
get_command_flash_attention_forward,
get_command_flash_attention_model_forward,
get_lm_forward_with_dist_cross_entropy,
)
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = ["CommandPolicy", "CommandForCausalLMPolicy"]
class CommandPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
self.tie_weight = self.tie_weight_check()
self.origin_attn_implement = self.model.config._attn_implementation
return self.model
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
from transformers.models.cohere.modeling_cohere import (
CohereAttention,
CohereDecoderLayer,
CohereFlashAttention2,
CohereModel,
CohereSdpaAttention,
)
ATTN_IMPLEMENTATION = {
"eager": CohereAttention,
"flash_attention_2": CohereFlashAttention2,
"sdpa": CohereSdpaAttention,
}
policy = {}
attn_cls = ATTN_IMPLEMENTATION[self.origin_attn_implement]
embedding_cls = None
if self.shard_config.enable_tensor_parallelism:
embedding_cls = VocabParallelEmbedding1D
else:
if self.tie_weight:
embedding_cls = PaddingEmbedding
if self.shard_config.enable_fused_normalization:
norm_cls = FusedLayerNorm
else:
norm_cls = LayerNorm
if self.pipeline_stage_manager is not None:
self.shard_config.enable_sequence_parallelism = False
self.shard_config.enable_sequence_overlap = False
self.shard_config.sequence_parallelism_mode = None
warnings.warn(
f"For Command, sequence parallelism is currently not compatible with pipeline parallelism, set to be False"
)
sp_mode = self.shard_config.sequence_parallelism_mode or None
sp_size = self.shard_config.sequence_parallel_size or None
sp_group = self.shard_config.sequence_parallel_process_group or None
sp_partial_derived = sp_mode in ["split_gather", "ring"]
if sp_mode == "all_to_all":
decoder_attribute_replacement = {
"num_heads": self.model.config.num_attention_heads // sp_size,
}
if getattr(self.model.config, "num_key_value_heads", False):
decoder_attribute_replacement["num_key_value_heads"] = self.model.config.num_key_value_heads // sp_size
policy[attn_cls] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
if self.shard_config.enable_flash_attention or self.shard_config.enable_sequence_parallelism:
self.append_or_create_method_replacement(
description={
"forward": get_command_flash_attention_forward(self.shard_config, sp_mode, sp_size, sp_group),
},
policy=policy,
target_key=attn_cls,
)
if self.pipeline_stage_manager is None:
self.append_or_create_method_replacement(
description={
"forward": get_command_flash_attention_model_forward(
self.shard_config,
sp_mode=sp_mode,
sp_size=sp_size,
sp_group=sp_group,
),
},
policy=policy,
target_key=CohereModel,
)
if self.shard_config.enable_tensor_parallelism:
assert (
self.model.config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
), f"The number of attention heads must be divisible by tensor parallel size."
if hasattr(self.model.config, "num_key_value_heads"):
assert (
self.model.config.num_key_value_heads >= self.shard_config.tensor_parallel_size
and self.model.config.num_key_value_heads % self.shard_config.tensor_parallel_size == 0
), f"The number of key_value heads must be divisible by, and must not be less than tensor parallel size."
decoder_attribute_replacement = {
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
}
if getattr(self.model.config, "num_key_value_heads", False):
decoder_attribute_replacement["self_attn.num_key_value_heads"] = (
self.model.config.num_key_value_heads // self.shard_config.tensor_parallel_size
)
policy[CohereDecoderLayer] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode),
),
],
)
if embedding_cls is not None:
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=embedding_cls,
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
),
policy=policy,
target_key=CohereModel,
)
# optimization configuration
self.append_or_create_submodule_replacement(
description=[
SubModuleReplacementDescription(
suffix="input_layernorm",
target_module=norm_cls,
kwargs={"sp_partial_derived": sp_partial_derived},
),
],
policy=policy,
target_key=CohereDecoderLayer,
)
self.append_or_create_submodule_replacement(
description=SubModuleReplacementDescription(
suffix="norm",
target_module=norm_cls,
kwargs={"sp_partial_derived": sp_partial_derived},
),
policy=policy,
target_key=CohereModel,
)
return policy
def postprocess(self):
return self.model
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
"""If under pipeline parallel setting, replacing the original forward method of huggingface
to customized forward method, and add this changing to policy."""
if self.pipeline_stage_manager is None:
return
stage_manager = self.pipeline_stage_manager
if self.model.__class__.__name__ == "CohereModel":
module = self.model
else:
module = self.model.model
if stage_manager.is_interleave:
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)
method_replacement = {
"forward": partial(new_forward, stage_manager=stage_manager, shard_config=self.shard_config)
}
else:
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
stage_index = stage_manager.get_stage_index(layers_per_stage)
method_replacement = {
"forward": partial(
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
)
}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
if self.model.__class__.__name__ == "CohereModel":
module = self.model
else:
module = self.model.model
stage_manager = self.pipeline_stage_manager
held_layers = []
if stage_manager.is_interleave:
assert stage_manager.num_model_chunks is not None
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
stage_indices = stage_manager.get_stage_index(layers_per_stage)
if stage_manager.is_first_stage(ignore_chunk=True):
held_layers.append(module.embed_tokens)
for start_idx, end_idx in stage_indices:
held_layers.extend(module.layers[start_idx:end_idx])
if stage_manager.is_last_stage(ignore_chunk=True):
held_layers.append(module.norm)
else:
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
if stage_manager.is_first_stage():
held_layers.append(module.embed_tokens)
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
held_layers.extend(module.layers[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.norm)
return held_layers
class CommandModelPolicy(CommandPolicy):
def module_policy(self):
policy = super().module_policy()
from transformers.models.cohere.modeling_cohere import CohereModel
if self.pipeline_stage_manager:
# set None as default
self.set_pipeline_forward(
model_cls=CohereModel, new_forward=CommandPipelineForwards.command_model_forward, policy=policy
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
held_layers = super().get_held_layers()
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
"""No shared params in command model"""
return []
class CommandForCausalLMPolicy(CommandPolicy):
def module_policy(self):
from transformers import CohereForCausalLM
policy = super().module_policy()
if self.shard_config.enable_tensor_parallelism:
# add a new item for casual lm
new_item = {
CohereForCausalLM: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=VocabParallelLMHead1D,
kwargs={
"gather_output": not self.shard_config.parallel_output,
"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by,
},
)
],
)
}
if self.shard_config.parallel_output:
new_item[CohereForCausalLM].method_replacement = {
"forward": get_lm_forward_with_dist_cross_entropy(self.shard_config)
}
else:
new_item = {
CohereForCausalLM: ModulePolicyDescription(
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head",
target_module=PaddingLMHead,
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
)
],
)
}
policy.update(new_item)
if self.pipeline_stage_manager:
# set None as default
self.set_pipeline_forward(
model_cls=CohereForCausalLM,
new_forward=CommandPipelineForwards.command_for_causal_lm_forward,
policy=policy,
)
return policy
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
stage_manager = self.pipeline_stage_manager
held_layers = super().get_held_layers()
if stage_manager.is_last_stage(ignore_chunk=True):
held_layers.append(self.model.lm_head)
return held_layers
def get_shared_params(self) -> List[Dict[int, Tensor]]:
command_model = self.model.model
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
if (
id(command_model.embed_tokens.weight) == id(self.model.lm_head.weight)
and self.pipeline_stage_manager.num_stages > 1
):
# tie weights
return [
{
0: command_model.embed_tokens.weight,
self.pipeline_stage_manager.num_stages - 1: self.model.lm_head.weight,
}
]
return []

2
colossalai/shardformer/policies/gpt2.py

@ -65,7 +65,7 @@ class GPT2Policy(Policy):
else:
norm_cls = col_nn.LayerNorm
sp_mode = self.shard_config.sequence_parallelism_mode if self.shard_config.enable_sequence_parallelism else None
sp_mode = self.shard_config.sequence_parallelism_mode or None
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for GPT2"
if sp_mode == "ring":
warnings.warn(

8
colossalai/shardformer/policies/llama.py

@ -73,11 +73,9 @@ class LlamaPolicy(Policy):
warnings.warn(
f"For llama, sequence parallelism is currently not compatible with pipeline parallelism, set to be False"
)
sp_mode = self.shard_config.sequence_parallelism_mode if self.shard_config.enable_sequence_parallelism else None
sp_size = self.shard_config.sequence_parallel_size if self.shard_config.enable_sequence_parallelism else None
sp_group = (
self.shard_config.sequence_parallel_process_group if self.shard_config.enable_sequence_parallelism else None
)
sp_mode = self.shard_config.sequence_parallelism_mode or None
sp_size = self.shard_config.sequence_parallel_size or None
sp_group = self.shard_config.sequence_parallel_process_group or None
sp_partial_derived = sp_mode in ["split_gather", "ring"]
if sp_mode == "all_to_all":

6
tests/kit/model_zoo/transformers/__init__.py

@ -22,3 +22,9 @@ try:
from .qwen2 import *
except ImportError:
print("This version of transformers doesn't support qwen2.")
try:
from .command import *
except ImportError:
print("This version of transformers doesn't support Command-R.")

79
tests/kit/model_zoo/transformers/command.py

@ -0,0 +1,79 @@
import torch
import transformers
from ..registry import ModelAttribute, model_zoo
try:
from transformers import CohereConfig
HAS_COMMAND = True
except ImportError:
HAS_COMMAND = False
if HAS_COMMAND:
# ===============================
# Register Command-R
# ===============================
def data_gen():
input_ids = torch.Tensor(
[
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
]
).long()
attention_mask = torch.Tensor(
[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
]
).long()
return dict(input_ids=input_ids, attention_mask=attention_mask)
# label is needed for casual lm
def data_gen_for_casual_lm():
data = data_gen()
labels = data["input_ids"].clone()
data["labels"] = labels
return data
# transform the output to a dict
output_transform_fn = lambda x: x
# function to get the loss
loss_fn = lambda output: output["last_hidden_state"].mean()
loss_fn_for_casual_lm = lambda output: output["loss"]
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
config = CohereConfig(
num_hidden_layers=8,
hidden_size=32,
intermediate_size=64,
num_attention_heads=4,
max_position_embeddings=128,
)
if hasattr(config, "pad_token_id"):
config.pad_token_id = config.eos_token_id
# register the following models
# transformers.CohereModel,
# transformers.CohereForCausalLM,
model_zoo.register(
name="transformers_command",
model_fn=lambda: transformers.CohereModel(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_command_for_casual_lm",
model_fn=lambda: transformers.CohereForCausalLM(config),
data_gen_fn=data_gen_for_casual_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_casual_lm,
model_attribute=ModelAttribute(has_control_flow=True),
)

322
tests/test_shardformer/test_model/test_shard_command.py

@ -0,0 +1,322 @@
import os
import pytest
import torch
import torch.distributed as dist
from torch.testing import assert_close
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.shardformer import PipelineGradientCheckpointConfig
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import (
build_model_from_hybrid_plugin,
check_all_grad_tensors,
check_loss,
check_output_hidden_state,
check_weight,
get_grad_tensors_for_check,
run_forward_backward_with_hybrid_plugin,
unwrap_model,
)
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
enable_gradient_checkpointing = test_config.pop("enable_gradient_checkpointing", False)
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
model_fn, loss_fn, test_config
)
if enable_gradient_checkpointing:
# org_model.gradient_checkpointing_enable()
sharded_model.unwrap().gradient_checkpointing_enable()
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
)
stage_manager = booster.plugin.stage_manager
tp_group = booster.plugin.tp_group
# unwrap model
command_model = unwrap_model(org_model, "CohereModel", "model")
shard_command_model = unwrap_model(sharded_model, "CohereModel", "model")
row_layer_for_check = ["layers[0].self_attn.q_proj", "embed_tokens"]
col_layer_for_check = ["layers[0].self_attn.o_proj"]
# Here we check the grad of layernorm because an all-reduce operation should be performed during sequence parallelism
norm_layer_for_check = ["layers[0].input_layernorm", "layers[1].input_layernorm"]
# During pipeline parallelism, we cannot get the grad of norm layer during first stage, so we only check this when pp is not enbaled
if stage_manager is None:
norm_layer_for_check.append("norm")
# Check the grad when using ZeRO-1 and ZeRO-2
if (
booster.plugin.zero_stage in [1, 2]
and booster.plugin.shard_config.enable_sequence_parallelism
and booster.plugin.shard_config.sequence_parallelism_mode == "all_to_all"
):
for p1, p2 in zip(command_model.parameters(), sharded_optimizer._master_param_groups_of_current_rank[0]):
working_p = sharded_optimizer._param_store.master_to_working_param[id(p2)]
grads = sharded_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(working_p))
grad_index = (
0 if sharded_optimizer._grad_store._partition_grads else sharded_optimizer._bucket_store.zero_local_rank
)
grad = grads[grad_index]
sharded_grad = p1.grad.view(-1).chunk(dist.get_world_size())[dist.get_rank()]
assert_close(sharded_grad, grad[: sharded_grad.shape[0]], atol=5e-3, rtol=5e-3, check_dtype=False)
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
grads_to_check = {}
if (stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True)) and booster.plugin.zero_stage == 0:
if test_config["precision"] == "fp32":
atol, rtol = 1e-6, 1e-4
else:
atol, rtol = 5e-3, 5e-3
row_layer_grads = get_grad_tensors_for_check(
command_model,
shard_command_model,
row_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=0,
verbose=False,
)
col_layer_grads = get_grad_tensors_for_check(
command_model,
shard_command_model,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False,
)
norm_layer_grads = get_grad_tensors_for_check(
command_model,
shard_command_model,
norm_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False,
)
grads_to_check.update(col_layer_grads)
grads_to_check.update(row_layer_grads)
grads_to_check.update(norm_layer_grads)
# optimizer executes step
org_optimizer.step()
sharded_optimizer.step()
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage(ignore_chunk=True):
if test_config["precision"] == "fp32":
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if org_model.__class__.__name__ == "CohereModel":
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
# check weights
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
if test_config["precision"] == "fp32":
atol, rtol = 1e-4, 1e-3
else:
atol, rtol = 5e-3, 5e-3
check_weight(
command_model,
shard_command_model,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False,
)
# check grads
check_all_grad_tensors(grads_to_check)
torch.cuda.empty_cache()
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 1,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "ring",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 2,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "split_gather",
"enable_flash_attention": False,
"use_lazy_init": True,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 1,
"sp_size": 2,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "all_to_all",
"use_lazy_init": True,
"zero_stage": 2,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 2,
"enable_all_optimization": True,
"use_lazy_init": True,
"precision": "fp16",
"initial_scale": 1,
"enable_gradient_checkpointing": True,
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(gradient_checkpointing_ratio=0.5),
},
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 4,
"use_lazy_init": False,
"precision": "fp32",
"enable_gradient_checkpointing": True,
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(num_ckpt_layers_per_stage=[4, 0]),
},
{
"tp_size": 2,
"pp_size": 1,
"enable_all_optimization": True,
"use_lazy_init": True,
"zero_stage": 2,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 2,
"enable_all_optimization": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
],
)
def run_command_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_command", "transformers_command_for_casual_lm")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
Randomizer.reset_index()
torch.cuda.empty_cache()
@parameterize(
"test_config",
[
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp16",
"zero_stage": 1,
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"pp_style": "interleaved",
"num_model_chunks": 2,
"num_microbatches": 4,
"enable_all_optimization": False,
"precision": "fp16",
"zero_stage": 1,
"initial_scale": 1,
"enable_gradient_checkpointing": True,
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(
num_ckpt_layers_per_stage=[0, 1, 2, 2],
),
},
],
)
def run_command_3d_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_command", "transformers_command_for_casual_lm")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
Randomizer.reset_index()
torch.cuda.empty_cache()
def check_command(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_command_test()
def check_command_3d(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_command_3d_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_command():
spawn(check_command, 4)
@pytest.mark.largedist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_command_3d():
spawn(check_command_3d, 8)
if __name__ == "__main__":
test_command()
test_command_3d()
Loading…
Cancel
Save