Browse Source

fixed using zero with tp cannot access weight correctly

pull/2933/head
zbian 2 years ago committed by アマデウス
parent
commit
61e687831d
  1. 79
      colossalai/nn/layer/colossalai_layer/_utils.py
  2. 61
      colossalai/nn/layer/colossalai_layer/dropout.py

79
colossalai/nn/layer/colossalai_layer/_utils.py

@ -1,38 +1,41 @@
import torch.nn as nn
from torch import Tensor
from ..parallel_2d._operation import split_batch_2d
from ..parallel_2p5d._operation import split_batch_2p5d
from ..parallel_3d._operation import split_batch_3d
from ..utils import get_tensor_parallel_mode
_parallel_split_batch = {'2d': split_batch_2d, '2.5d': split_batch_2p5d, '3d': split_batch_3d}
def partition_batch(input_) -> Tensor:
tensor_parallel_mode = get_tensor_parallel_mode()
if tensor_parallel_mode in _parallel_split_batch:
if isinstance(input_, dict):
return {k: _parallel_split_batch[tensor_parallel_mode](v) for k, v in input_.items()}
else:
return _parallel_split_batch[tensor_parallel_mode](input_)
else:
return input_
class ColossalaiModule(nn.Module):
def __init__(self, module: nn.Module, **kwargs):
super().__init__()
# copy values
self.__dict__ = module.__dict__.copy()
# copy methods
for name, attr in module.__class__.__dict__.items():
if name not in ['__init__', 'forward'] and callable(attr):
setattr(self, name, getattr(module, name))
self._forward_func = module.forward
for k, v in kwargs.items():
setattr(self, k, v)
def forward(self, *args):
return self._forward_func(*args)
import torch.nn as nn
from torch import Tensor
from ..parallel_2d._operation import split_batch_2d
from ..parallel_2p5d._operation import split_batch_2p5d
from ..parallel_3d._operation import split_batch_3d
from ..utils import get_tensor_parallel_mode
_parallel_split_batch = {'2d': split_batch_2d, '2.5d': split_batch_2p5d, '3d': split_batch_3d}
def partition_batch(input_) -> Tensor:
tensor_parallel_mode = get_tensor_parallel_mode()
if tensor_parallel_mode in _parallel_split_batch:
if isinstance(input_, dict):
return {k: _parallel_split_batch[tensor_parallel_mode](v) for k, v in input_.items()}
else:
return _parallel_split_batch[tensor_parallel_mode](input_)
else:
return input_
class ColossalaiModule(nn.Module):
def __init__(self, module: nn.Module, **kwargs):
super().__init__()
self.module = module
for k, v in kwargs.items():
setattr(self, k, v)
def __getattr__(self, name: str):
if name == 'module':
return super().__getattr__(name)
elif hasattr(self.module, name):
return getattr(self.module, name)
elif name in self.__dict__:
return self.__dict__[name]
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, name))
def forward(self, *args):
return self.module(*args)

61
colossalai/nn/layer/colossalai_layer/dropout.py

@ -1,30 +1,31 @@
import torch.nn as nn
from colossalai.context import ParallelMode, seed
from ..parallel_1d import *
from ..utils import get_tensor_parallel_mode
from ._utils import ColossalaiModule
class Dropout(ColossalaiModule):
"""Dropout layer of colossalai.
Args:
p (float, optional): probability of an element to be zeroed, defaults 0.5.
inplace (bool, optional): whether to do dropout in-place, default to be False.
"""
def __init__(self, p: float = 0.5, inplace: bool = False) -> None:
tensor_parallel = get_tensor_parallel_mode()
if tensor_parallel == "1d":
drop = Dropout1D(p, inplace)
else:
drop = nn.Dropout(p, inplace)
super().__init__(drop, tensor_parallel=tensor_parallel)
def forward(self, *args):
if self.tensor_parallel in [None, '1d']:
return self._forward_func(*args)
else:
with seed(ParallelMode.TENSOR):
return self._forward_func(*args)
import torch.nn as nn
from colossalai.context import ParallelMode, seed
from ..parallel_1d import *
from ..utils import get_tensor_parallel_mode
from ._utils import ColossalaiModule
class Dropout(ColossalaiModule):
"""Dropout layer of colossalai.
Args:
p (float, optional): probability of an element to be zeroed, defaults 0.5.
inplace (bool, optional): whether to do dropout in-place, default to be False.
"""
def __init__(self, p: float = 0.5, inplace: bool = False) -> None:
tensor_parallel = get_tensor_parallel_mode()
if tensor_parallel == "1d":
drop = Dropout1D(p, inplace)
else:
drop = nn.Dropout(p, inplace)
super().__init__(drop, tensor_parallel=tensor_parallel)
def forward(self, *args):
if self.tensor_parallel in [None, '1d']:
return super().forward(*args)
else:
with seed(ParallelMode.TENSOR):
return super().forward(*args)

Loading…
Cancel
Save