mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add binary elementwise metainfo for auto parallel (#2058)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test * [autoparallel] add batchnorm metainfo class * [autoparallel] fix batchnorm unit test function declaration * [fx] restore profiler * [fx] add relu metainfo class * [fx] restore profiler * [autoparallel] modify metainfo input * [autoparallel] add pooling metainfo * [autoparallel] add F.linear metainfo generator * [autoparallel] add binary elementwise metainfo * [fx] recover profiler * [autoparallel] fix forward memory calculation * [autoparallel] modify constants.py * [autoparallel] remove redundant printpull/2071/head
parent
4b40fbd743
commit
616da17fab
|
@ -1,5 +1,12 @@
|
|||
import operator
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ..tensor_shard.constants import *
|
||||
|
||||
# list of inplace operations
|
||||
INPLACE_MODULE = [nn.ReLU]
|
||||
|
||||
# list of operations that do not save forward activations
|
||||
NO_SAVE_ACTIVATION = [torch.add, torch.sub, operator.add, operator.sub]
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from .activation import *
|
||||
from .binary_elementwise_ops import *
|
||||
from .conv import *
|
||||
from .linear import *
|
||||
from .norm import *
|
||||
|
|
|
@ -0,0 +1,65 @@
|
|||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, OperationDataType, TrainCycleItem
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
|
||||
from ..constants import BCAST_FUNC_OP
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ['binary_elementwise_meta_info']
|
||||
|
||||
|
||||
@meta_register.register(BCAST_FUNC_OP)
|
||||
def binary_elementwise_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""Meta information generator for binary elementwise operations
|
||||
NOTE: Some of the binary elementwise operations will discard the input activation after computation, as they
|
||||
don't need those tensors for back propagation, for example, if there are two tensors being sent for `torch.add`,
|
||||
they will be discarded right after add operation is done. We create a simple API in `MetaInfo` class to identify
|
||||
this behavior, it is critical for better memory estimation.
|
||||
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
|
||||
input_op_data, other_op_data = [arg for arg in args if arg.type != OperationDataType.OUTPUT]
|
||||
output_op_data = next(filter(lambda arg: arg.type == OperationDataType.OUTPUT, args))
|
||||
|
||||
# construct forward args for flop mapping
|
||||
fwd_in_args = [input_op_data.data, other_op_data.data]
|
||||
fwd_out_args = [output_op_data.data]
|
||||
|
||||
# calculate cost
|
||||
|
||||
# calculate compute cost
|
||||
# NOTE: we set bwd_compute_cost two times of fwd_compute_cost in this case
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten._adaptive_avg_pool2d.default](fwd_in_args, fwd_out_args)
|
||||
bwd_compute_cost = fwd_compute_cost * 2
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
param_mem_cost = activation_size(
|
||||
[arg.data for arg in [input_op_data, other_op_data] if arg.type == OperationDataType.PARAM])
|
||||
fwd_mem_cost = MemoryCost(
|
||||
activation=activation_size([input_op_data.data, output_op_data.data]),
|
||||
parameter=param_mem_cost,
|
||||
)
|
||||
bwd_mem_cost = MemoryCost(
|
||||
activation=activation_size(fwd_in_args),
|
||||
parameter=param_mem_cost,
|
||||
)
|
||||
|
||||
# total cost
|
||||
total_mem_cost = MemoryCost(
|
||||
activation=fwd_mem_cost.activation + bwd_mem_cost.activation,
|
||||
parameter=fwd_mem_cost.parameter + bwd_mem_cost.parameter,
|
||||
)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
|
||||
# store fwd_in
|
||||
fwd_in = fwd_in_args
|
||||
|
||||
return compute_cost, memory_cost, fwd_in
|
|
@ -13,7 +13,7 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
|||
)
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from .constants import INPLACE_MODULE
|
||||
from .constants import INPLACE_MODULE, NO_SAVE_ACTIVATION
|
||||
from .registry import meta_register
|
||||
|
||||
__all__ = ['MetaInfo']
|
||||
|
@ -35,6 +35,9 @@ class MetaInfo:
|
|||
# list of input tensors
|
||||
self.fwd_in: list[OperationData]
|
||||
|
||||
# bool type to indicate whether the function will save forward activation
|
||||
self.save_fwd_in: bool
|
||||
|
||||
# sharding strategy
|
||||
self._strategy = strategy
|
||||
|
||||
|
@ -95,10 +98,16 @@ class MetaInfo:
|
|||
try:
|
||||
# module
|
||||
meta_func = meta_register.get(self._target.__class__)
|
||||
|
||||
# check whether the target in the module list that we don't need to save activation
|
||||
self.save_fwd_in = self._target.__class__ not in NO_SAVE_ACTIVATION
|
||||
except:
|
||||
# function
|
||||
meta_func = meta_register.get(self._target)
|
||||
|
||||
# check whether the target in the module list that we don't need to save activation
|
||||
self.save_fwd_in = self._target not in NO_SAVE_ACTIVATION
|
||||
|
||||
# construct args for meta_func
|
||||
args = [self.compute_sharded_tensor(k, v) for k, v in self._strategy.sharding_specs.items()]
|
||||
|
||||
|
|
|
@ -35,9 +35,9 @@ def _ReLU_module_mem_test(rank, world_size, port):
|
|||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
# index of target node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
# total number of target node strategies
|
||||
strategy_number = 1
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
|
|
|
@ -34,9 +34,9 @@ def _batchnorm_module_mem_test(rank, world_size, port):
|
|||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
# index of target node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
# total number of target node strategies
|
||||
strategy_number = 4
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
|
|
|
@ -0,0 +1,71 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
|
||||
|
||||
|
||||
class BinaryElementwiseOpModule(nn.Module):
|
||||
|
||||
def __init__(self, token=torch.add, shape=64) -> None:
|
||||
super().__init__()
|
||||
self.token = token
|
||||
self.param = nn.Parameter(torch.rand(shape))
|
||||
|
||||
def forward(self, input):
|
||||
return input + self.param
|
||||
|
||||
|
||||
def _binary_elementwise_mem_test(rank, world_size, port):
|
||||
"""This function is for binary elementwise ops memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
rank: device rank
|
||||
bias: indicate whether conv module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = BinaryElementwiseOpModule(token=torch.add, shape=1024).cuda()
|
||||
input = torch.rand(32, 1024).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of target node in computation graph
|
||||
node_index = 2
|
||||
# total number of target node strategies
|
||||
strategy_number = 9
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_binary_elementwise_meta_concrete_info_match():
|
||||
world_size = 4
|
||||
run_func_module = partial(_binary_elementwise_mem_test, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_binary_elementwise_meta_concrete_info_match()
|
|
@ -35,9 +35,9 @@ def _conv_module_mem_test(rank, bias, world_size, port):
|
|||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
# index of target node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
# total number of target node strategies
|
||||
strategy_number = 16
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
|
|
|
@ -34,9 +34,9 @@ def _adaptiveavgpool_module_mem_test(rank, world_size, port):
|
|||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
# index of target node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
# total number of target strategies
|
||||
strategy_number = 1
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
|
@ -75,9 +75,9 @@ def _maxpool_module_mem_test(rank, world_size, port):
|
|||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
# index of target node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
# total number of target node strategies
|
||||
strategy_number = 9
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
|
|
Loading…
Reference in New Issue