[checkpointio] fix size compute

pull/6124/merge
ver217 7 days ago committed by Hongxin Liu
parent eb69e640e5
commit 5fa657f0a1

@ -18,6 +18,7 @@ from colossalai.amp.naive_amp.mixed_precision_mixin import (
FP16MixedPrecisionMixin, FP16MixedPrecisionMixin,
MixedPrecisionMixin, MixedPrecisionMixin,
) )
from colossalai.checkpoint_io.utils import calculate_tensor_size
from colossalai.interface import OptimizerWrapper from colossalai.interface import OptimizerWrapper
from colossalai.logging import get_dist_logger from colossalai.logging import get_dist_logger
from colossalai.quantization.fp8 import all_gather_fp8, all_reduce_fp8, reduce_scatter_fp8 from colossalai.quantization.fp8 import all_gather_fp8, all_reduce_fp8, reduce_scatter_fp8
@ -865,19 +866,17 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
for k, v in states.items(): for k, v in states.items():
if isinstance(v, torch.Tensor) and k != "step": if isinstance(v, torch.Tensor) and k != "step":
if pinned_state_dicts and k not in pinned_state_dicts[param_idx]:
pinned_state_dicts[param_idx][k] = torch.empty_like(
working_param, pin_memory=True, device="cpu"
)
state_tensor = torch.empty(v.numel() * get_nd_world_size(pg), device=device, dtype=v.dtype) state_tensor = torch.empty(v.numel() * get_nd_world_size(pg), device=device, dtype=v.dtype)
all_gather_into_flat_tensor_nd(state_tensor, v.to(device).flatten(), pg) all_gather_into_flat_tensor_nd(state_tensor, v.to(device).flatten(), pg)
state_tensor = state_tensor[: working_param.numel()].reshape_as(working_param) state_tensor = state_tensor[: working_param.numel()].reshape_as(working_param)
if pinned_state_dicts and k not in pinned_state_dicts[param_idx]:
pinned_state_dicts[param_idx][k] = torch.empty_like(state_tensor, pin_memory=True, device="cpu")
if pinned_state_dicts: if pinned_state_dicts:
pinned_state_dicts[param_idx][k].copy_(state_tensor) pinned_state_dicts[param_idx][k].copy_(state_tensor)
current_block[k] = pinned_state_dicts[param_idx][k] current_block[k] = pinned_state_dicts[param_idx][k]
else: else:
current_block[k] = state_tensor.cpu() current_block[k] = state_tensor.cpu()
current_block_size += state_tensor.numel() current_block_size += calculate_tensor_size(state_tensor)
if ret_block_size + current_block_size > max_shard_size and len(ret_block) > 0: if ret_block_size + current_block_size > max_shard_size and len(ret_block) > 0:
yield ret_block, ret_block_size yield ret_block, ret_block_size

Loading…
Cancel
Save