mirror of https://github.com/hpcaitech/ColossalAI
[cluster] add process group mesh (#4039)
* [cluster] add process group mesh * [test] add process group mesh test * force syncpull/4445/head
parent
ff836790ae
commit
5e1a9d48dd
|
@ -1,5 +1,6 @@
|
|||
from .device_mesh_manager import DeviceMeshManager
|
||||
from .dist_coordinator import DistCoordinator
|
||||
from .process_group_manager import ProcessGroupManager
|
||||
from .process_group_mesh import ProcessGroupMesh
|
||||
|
||||
__all__ = ['DistCoordinator', 'ProcessGroupManager', 'DeviceMeshManager']
|
||||
__all__ = ['DistCoordinator', 'ProcessGroupManager', 'DeviceMeshManager', 'ProcessGroupMesh']
|
||||
|
|
|
@ -0,0 +1,203 @@
|
|||
import itertools
|
||||
from functools import reduce
|
||||
from operator import mul
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup
|
||||
|
||||
|
||||
def prod(nums: List[int]) -> int:
|
||||
"""Product of a list of numbers.
|
||||
|
||||
Args:
|
||||
nums (List[int]): A list of numbers.
|
||||
|
||||
Returns:
|
||||
int: The product of the numbers.
|
||||
"""
|
||||
return reduce(mul, nums)
|
||||
|
||||
|
||||
class ProcessGroupMesh:
|
||||
"""A helper class to manage the process group mesh. It only describes how to organize process groups, and it's decoupled with parallel method.
|
||||
It just initialize process groups and cache them. The parallel method should manage them and use them to do the parallel computation.
|
||||
|
||||
We use a ND-tuple to represent the process group mesh. And a ND-coordinate is to represent each process.
|
||||
For example, ``(0, 1, 0)`` represents the process whose rank is 2 in a 3D process group mesh with size ``(2, 2, 2)``.
|
||||
|
||||
Args:
|
||||
*size (int): The size of each dimension of the process group mesh. The product of the size must be equal to the world size.
|
||||
|
||||
Attributes:
|
||||
shape (Tuple[int, ...]): The shape of the process group mesh.
|
||||
rank (int): The rank of the current process.
|
||||
"""
|
||||
|
||||
def __init__(self, *size: int) -> None:
|
||||
assert dist.is_initialized(), "Please initialize torch.distributed first."
|
||||
assert prod(size) == dist.get_world_size(), "The product of the size must be equal to the world size."
|
||||
self._shape = size
|
||||
self._rank = dist.get_rank()
|
||||
self._coord = ProcessGroupMesh.unravel(self._rank, self._shape)
|
||||
self._ranks_to_group: Dict[Tuple[int, ...], ProcessGroup] = {}
|
||||
self._group_to_ranks: Dict[ProcessGroup, Tuple[int, ...]] = {}
|
||||
|
||||
@property
|
||||
def shape(self) -> Tuple[int, ...]:
|
||||
return self._shape
|
||||
|
||||
@property
|
||||
def rank(self) -> int:
|
||||
return self._rank
|
||||
|
||||
def size(self, dim: Optional[int] = None) -> Union[int, Tuple[int, ...]]:
|
||||
"""Get the size of the process group mesh.
|
||||
|
||||
Args:
|
||||
dim (Optional[int], optional): Dimension of the process group mesh. `None` means all dimensions. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Union[int, Tuple[int, ...]]: Size of the target dimension or the whole process group mesh.
|
||||
"""
|
||||
if dim is None:
|
||||
return self._shape
|
||||
else:
|
||||
return self._shape[dim]
|
||||
|
||||
def coordinate(self, dim: Optional[int] = None) -> Union[int, Tuple[int, ...]]:
|
||||
"""Get the coordinate of the process group mesh.
|
||||
|
||||
Args:
|
||||
dim (Optional[int], optional): Dimension of the process group mesh. `None` means all dimensions. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Union[int, Tuple[int, ...]]: Coordinate of the target dimension or the whole process group mesh.
|
||||
"""
|
||||
if dim is None:
|
||||
return self._coord
|
||||
else:
|
||||
return self._coord[dim]
|
||||
|
||||
@staticmethod
|
||||
def unravel(rank: int, shape: Tuple[int, ...]) -> Tuple[int, ...]:
|
||||
"""Convert a rank to a coordinate.
|
||||
|
||||
Args:
|
||||
rank (int): Rank to be converted.
|
||||
shape (Tuple[int, ...]): Shape of the process group mesh.
|
||||
|
||||
Returns:
|
||||
Tuple[int, ...]: Coordinate of the rank.
|
||||
"""
|
||||
return np.unravel_index(rank, shape)
|
||||
|
||||
@staticmethod
|
||||
def ravel(coord: Tuple[int, ...], shape: Tuple[int, ...]) -> int:
|
||||
"""Convert a coordinate to a rank.
|
||||
|
||||
Args:
|
||||
coords (Tuple[int, ...]): Coordinate to be converted.
|
||||
shape (Tuple[int, ...]): Shape of the process group mesh.
|
||||
|
||||
Returns:
|
||||
int: Rank of the coordinate.
|
||||
"""
|
||||
return np.ravel_multi_index(coord, shape)
|
||||
|
||||
def get_group(self, ranks_in_group: List[int], backend: Optional[str] = None) -> ProcessGroup:
|
||||
"""Get the process group with the given ranks. It the process group doesn't exist, it will be created.
|
||||
|
||||
Args:
|
||||
ranks_in_group (List[int]): Ranks in the process group.
|
||||
backend (Optional[str], optional): Backend of the process group. Defaults to None.
|
||||
|
||||
Returns:
|
||||
ProcessGroup: The process group with the given ranks.
|
||||
"""
|
||||
ranks_in_group = sorted(ranks_in_group)
|
||||
if tuple(ranks_in_group) not in self._group_to_ranks:
|
||||
group = dist.new_group(ranks_in_group, backend=backend)
|
||||
self._ranks_to_group[tuple(ranks_in_group)] = group
|
||||
self._group_to_ranks[group] = tuple(ranks_in_group)
|
||||
return self._ranks_to_group[tuple(ranks_in_group)]
|
||||
|
||||
def get_ranks_in_group(self, group: ProcessGroup) -> List[int]:
|
||||
"""Get the ranks in the given process group. The process group must be created by this class.
|
||||
|
||||
Args:
|
||||
group (ProcessGroup): The process group.
|
||||
|
||||
Returns:
|
||||
List[int]: Ranks in the process group.
|
||||
"""
|
||||
return list(self._group_to_ranks[group])
|
||||
|
||||
@staticmethod
|
||||
def get_coords_along_axis(base_coord: Tuple[int, ...], axis: int,
|
||||
indices_at_axis: List[int]) -> List[Tuple[int, ...]]:
|
||||
"""Get coordinates along the given axis.
|
||||
|
||||
Args:
|
||||
base_coord (Tuple[int, ...]): Base coordinate which the coordinates along the axis are based on.
|
||||
axis (int): Axis along which the coordinates are generated.
|
||||
indices_at_axis (List[int]): Indices at the axis.
|
||||
|
||||
Returns:
|
||||
List[Tuple[int, ...]]: Coordinates along the axis.
|
||||
"""
|
||||
coords_in_group = []
|
||||
for idx in indices_at_axis:
|
||||
coords_in_group.append(base_coord[:axis] + (idx,) + base_coord[axis + 1:])
|
||||
return coords_in_group
|
||||
|
||||
def create_group_along_axis(self,
|
||||
axis: int,
|
||||
indices_at_axis: Optional[List[int]] = None,
|
||||
backend: Optional[str] = None) -> ProcessGroup:
|
||||
"""Create all process groups along the given axis, and return the one which the current process belongs to.
|
||||
|
||||
Args:
|
||||
axis (int): Axis along which the process groups are created.
|
||||
indices_at_axis (Optional[List[int]], optional): Indices at the axis. Defaults to None.
|
||||
backend (Optional[str], optional): Backend of the process group. Defaults to None.
|
||||
|
||||
Returns:
|
||||
ProcessGroup: The process group along the given axis which the current process belongs to.
|
||||
"""
|
||||
indices_at_axis = indices_at_axis or list(range(self._shape[axis]))
|
||||
reduced_shape = list(self._shape)
|
||||
# the choices on the axis are reduced to 1, since it's determined by `indices_at_axis`
|
||||
reduced_shape[axis] = 1
|
||||
target_group = None
|
||||
# use Cartesian product to generate all combinations of coordinates
|
||||
for base_coord in itertools.product(*[range(s) for s in reduced_shape]):
|
||||
coords_in_group = ProcessGroupMesh.get_coords_along_axis(base_coord, axis, indices_at_axis)
|
||||
ranks_in_group = tuple([ProcessGroupMesh.ravel(coord, self._shape) for coord in coords_in_group])
|
||||
group = self.get_group(ranks_in_group, backend=backend)
|
||||
if self._rank in ranks_in_group:
|
||||
target_group = group
|
||||
return target_group
|
||||
|
||||
def get_group_along_axis(self,
|
||||
axis: int,
|
||||
indices_at_axis: Optional[List[int]] = None,
|
||||
backend: Optional[str] = None) -> ProcessGroup:
|
||||
"""Get the process group along the given axis which the current process belongs to. If the process group doesn't exist, it will be created.
|
||||
|
||||
Args:
|
||||
axis (int): Axis along which the process groups are created.
|
||||
indices_at_axis (Optional[List[int]], optional): Indices at the axis. Defaults to None.
|
||||
backend (Optional[str], optional): Backend of the process group. Defaults to None.
|
||||
|
||||
Returns:
|
||||
ProcessGroup: The process group along the given axis which the current process belongs to.
|
||||
"""
|
||||
indices_at_axis = indices_at_axis or list(range(self._shape[axis]))
|
||||
coords_in_group = ProcessGroupMesh.get_coords_along_axis(self._coord, axis, indices_at_axis)
|
||||
ranks_in_group = tuple([ProcessGroupMesh.ravel(coord, self._shape) for coord in coords_in_group])
|
||||
if ranks_in_group not in self._ranks_to_group:
|
||||
# no need to cache it explicitly, since it will be cached in `create_group_along_axis`
|
||||
return self.create_group_along_axis(axis, indices_at_axis, backend=backend)
|
||||
return self._ranks_to_group[ranks_in_group]
|
|
@ -0,0 +1,151 @@
|
|||
import pytest
|
||||
import torch.distributed as dist
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.testing import spawn
|
||||
|
||||
|
||||
def check_process_group_mesh_with_gpc():
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
DP_DIM, PP_DIM, TP_DIM = 0, 1, 2
|
||||
pg_mesh = ProcessGroupMesh(1, 2, 2)
|
||||
|
||||
# check world size
|
||||
assert gpc.get_world_size(ParallelMode.TENSOR) == pg_mesh.size(
|
||||
TP_DIM), f'{gpc.get_world_size(ParallelMode.TENSOR)} != {pg_mesh.size(TP_DIM)}'
|
||||
assert gpc.get_world_size(ParallelMode.PIPELINE) == pg_mesh.size(PP_DIM)
|
||||
assert gpc.get_world_size(ParallelMode.DATA) == pg_mesh.size(DP_DIM)
|
||||
|
||||
# check locak rank (coordinate)
|
||||
assert gpc.get_local_rank(ParallelMode.TENSOR) == pg_mesh.coordinate(
|
||||
TP_DIM), f'{gpc.get_local_rank(ParallelMode.TENSOR)} != {pg_mesh.coordinate(TP_DIM)}'
|
||||
assert gpc.get_local_rank(ParallelMode.PIPELINE) == pg_mesh.coordinate(PP_DIM)
|
||||
assert gpc.get_local_rank(ParallelMode.DATA) == pg_mesh.coordinate(DP_DIM)
|
||||
|
||||
# check ranks in group
|
||||
tp_group = pg_mesh.get_group_along_axis(TP_DIM)
|
||||
assert gpc.get_ranks_in_group(ParallelMode.TENSOR) == pg_mesh.get_ranks_in_group(tp_group)
|
||||
pp_group = pg_mesh.get_group_along_axis(PP_DIM)
|
||||
assert gpc.get_ranks_in_group(ParallelMode.PIPELINE) == pg_mesh.get_ranks_in_group(pp_group)
|
||||
dp_group = pg_mesh.get_group_along_axis(DP_DIM)
|
||||
assert gpc.get_ranks_in_group(ParallelMode.DATA) == pg_mesh.get_ranks_in_group(dp_group)
|
||||
|
||||
# check prev rank
|
||||
coord = pg_mesh.coordinate()
|
||||
if not gpc.is_first_rank(ParallelMode.TENSOR):
|
||||
assert coord[TP_DIM] != 0
|
||||
prev_coord = coord[:TP_DIM] + (coord[TP_DIM] - 1,) + coord[TP_DIM + 1:]
|
||||
assert gpc.get_prev_global_rank(ParallelMode.TENSOR) == pg_mesh.ravel(prev_coord, pg_mesh.shape)
|
||||
if not gpc.is_first_rank(ParallelMode.PIPELINE):
|
||||
assert coord[PP_DIM] != 0
|
||||
prev_coord = coord[:PP_DIM] + (coord[PP_DIM] - 1,) + coord[PP_DIM + 1:]
|
||||
assert gpc.get_prev_global_rank(ParallelMode.PIPELINE) == pg_mesh.ravel(prev_coord, pg_mesh.shape)
|
||||
|
||||
# check next rank
|
||||
if not gpc.is_last_rank(ParallelMode.TENSOR):
|
||||
assert coord[TP_DIM] != pg_mesh.size(TP_DIM) - 1
|
||||
next_coord = coord[:TP_DIM] + (coord[TP_DIM] + 1,) + coord[TP_DIM + 1:]
|
||||
assert gpc.get_next_global_rank(ParallelMode.TENSOR) == pg_mesh.ravel(next_coord, pg_mesh.shape)
|
||||
if not gpc.is_last_rank(ParallelMode.PIPELINE):
|
||||
assert coord[PP_DIM] != pg_mesh.size(PP_DIM) - 1
|
||||
next_coord = coord[:PP_DIM] + (coord[PP_DIM] + 1,) + coord[PP_DIM + 1:]
|
||||
assert gpc.get_next_global_rank(ParallelMode.PIPELINE) == pg_mesh.ravel(next_coord, pg_mesh.shape)
|
||||
|
||||
|
||||
def check_process_group_mesh_with_cases():
|
||||
DP_DIM, PP_DIM, TP_DIM = 0, 1, 2
|
||||
DP_SIZE, PP_SIZE, TP_SIZE = 1, 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0, 0),
|
||||
1: (0, 0, 1),
|
||||
2: (0, 1, 0),
|
||||
3: (0, 1, 1),
|
||||
}
|
||||
TP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 2],
|
||||
1: [1, 3],
|
||||
2: [0, 2],
|
||||
3: [1, 3],
|
||||
}
|
||||
DP_RANKS_IN_GROUP = {
|
||||
0: [0],
|
||||
1: [1],
|
||||
2: [2],
|
||||
3: [3],
|
||||
}
|
||||
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE, TP_SIZE)
|
||||
|
||||
rank = dist.get_rank()
|
||||
assert rank == pg_mesh.rank
|
||||
|
||||
# check world size
|
||||
assert pg_mesh.size(TP_DIM) == 2
|
||||
assert pg_mesh.size(PP_DIM) == 2
|
||||
assert pg_mesh.size(DP_DIM) == 1
|
||||
|
||||
# check coordinate
|
||||
assert pg_mesh.coordinate(TP_DIM) == RANK_TO_COORDINATE[rank][TP_DIM]
|
||||
assert pg_mesh.coordinate(PP_DIM) == RANK_TO_COORDINATE[rank][PP_DIM]
|
||||
assert pg_mesh.coordinate(DP_DIM) == RANK_TO_COORDINATE[rank][DP_DIM]
|
||||
|
||||
# check ranks in group
|
||||
tp_group = pg_mesh.get_group_along_axis(TP_DIM)
|
||||
assert pg_mesh.get_ranks_in_group(tp_group) == TP_RANKS_IN_GROUP[rank]
|
||||
pp_group = pg_mesh.get_group_along_axis(PP_DIM)
|
||||
assert pg_mesh.get_ranks_in_group(pp_group) == PP_RANKS_IN_GROUP[rank]
|
||||
dp_group = pg_mesh.get_group_along_axis(DP_DIM)
|
||||
assert pg_mesh.get_ranks_in_group(dp_group) == DP_RANKS_IN_GROUP[rank]
|
||||
|
||||
# check prev rank
|
||||
if RANK_TO_COORDINATE[rank][TP_DIM] != 0:
|
||||
prev_coord = RANK_TO_COORDINATE[rank][:TP_DIM] + (RANK_TO_COORDINATE[rank][TP_DIM] - 1,) + \
|
||||
RANK_TO_COORDINATE[rank][TP_DIM + 1:]
|
||||
prev_rank = TP_RANKS_IN_GROUP[rank][TP_RANKS_IN_GROUP[rank].index(rank) - 1]
|
||||
assert pg_mesh.ravel(prev_coord, pg_mesh.shape) == prev_rank
|
||||
if RANK_TO_COORDINATE[rank][PP_DIM] != 0:
|
||||
prev_coord = RANK_TO_COORDINATE[rank][:PP_DIM] + (RANK_TO_COORDINATE[rank][PP_DIM] - 1,) + \
|
||||
RANK_TO_COORDINATE[rank][PP_DIM + 1:]
|
||||
prev_rank = PP_RANKS_IN_GROUP[rank][PP_RANKS_IN_GROUP[rank].index(rank) - 1]
|
||||
assert pg_mesh.ravel(prev_coord, pg_mesh.shape) == prev_rank
|
||||
|
||||
# check next rank
|
||||
if RANK_TO_COORDINATE[rank][TP_DIM] != TP_SIZE - 1:
|
||||
next_coord = RANK_TO_COORDINATE[rank][:TP_DIM] + (RANK_TO_COORDINATE[rank][TP_DIM] + 1,) + \
|
||||
RANK_TO_COORDINATE[rank][TP_DIM + 1:]
|
||||
next_rank = TP_RANKS_IN_GROUP[rank][TP_RANKS_IN_GROUP[rank].index(rank) + 1]
|
||||
assert pg_mesh.ravel(next_coord, pg_mesh.shape) == next_rank
|
||||
if RANK_TO_COORDINATE[rank][PP_DIM] != PP_SIZE - 1:
|
||||
next_coord = RANK_TO_COORDINATE[rank][:PP_DIM] + (RANK_TO_COORDINATE[rank][PP_DIM] + 1,) + \
|
||||
RANK_TO_COORDINATE[rank][PP_DIM + 1:]
|
||||
next_rank = PP_RANKS_IN_GROUP[rank][PP_RANKS_IN_GROUP[rank].index(rank) + 1]
|
||||
assert pg_mesh.ravel(next_coord, pg_mesh.shape) == next_rank
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config=dict(parallel=dict(data=1, pipeline=2, tensor=dict(mode='1d', size=2))),
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
port=port,
|
||||
host='localhost')
|
||||
# TODO(ver217): this function should be removed when gpc is removed
|
||||
check_process_group_mesh_with_gpc()
|
||||
check_process_group_mesh_with_cases()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_process_group_mesh():
|
||||
spawn(run_dist, 4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_process_group_mesh()
|
Loading…
Reference in New Issue