mirror of https://github.com/hpcaitech/ColossalAI
[zero] use bucket during allgather (#5860)
* [zero] use bucket during allgather * [zero] rename apipull/5864/head
parent
8e718a1421
commit
5dfbcd7746
|
@ -1,3 +1,7 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
||||
|
||||
|
||||
|
@ -6,6 +10,7 @@ class TensorBucket:
|
|||
self._max_size = size
|
||||
self._current_size = 0
|
||||
self._bucket = []
|
||||
self._write_back_pairs = {}
|
||||
|
||||
@property
|
||||
def max_size(self):
|
||||
|
@ -21,7 +26,7 @@ class TensorBucket:
|
|||
def is_empty(self):
|
||||
return len(self._bucket) == 0
|
||||
|
||||
def add_to_bucket(self, tensor, allow_oversize=False):
|
||||
def add_to_bucket(self, tensor, allow_oversize=False, write_back_tensor: Optional[torch.Tensor] = None):
|
||||
tensor_size = tensor.numel()
|
||||
|
||||
if not allow_oversize and self.will_exceed_max_size(tensor_size):
|
||||
|
@ -30,6 +35,8 @@ class TensorBucket:
|
|||
|
||||
self._bucket.append(tensor)
|
||||
self._current_size += tensor_size
|
||||
write_back_tensor = write_back_tensor if write_back_tensor is not None else tensor
|
||||
self._write_back_pairs[tensor] = write_back_tensor
|
||||
|
||||
def will_exceed_max_size(self, tensor_size):
|
||||
expected_size = self._current_size + tensor_size
|
||||
|
@ -40,12 +47,30 @@ class TensorBucket:
|
|||
|
||||
def empty(self):
|
||||
self._bucket = []
|
||||
self._size = 0
|
||||
self._current_size = 0
|
||||
self._write_back_pairs = {}
|
||||
|
||||
def flatten(self):
|
||||
return _flatten_dense_tensors(self._bucket)
|
||||
|
||||
def unflatten(self, flat_tensor):
|
||||
return _unflatten_dense_tensors(flat_tensor, self._bucket)
|
||||
|
||||
def unflatten_and_copy(self, flat_tensor):
|
||||
unflattened_tensor_list = _unflatten_dense_tensors(flat_tensor, self._bucket)
|
||||
unflattened_tensor_list = self.unflatten(flat_tensor)
|
||||
for old, new in zip(self._bucket, unflattened_tensor_list):
|
||||
old.copy_(new)
|
||||
|
||||
def all_gather(self, group=None):
|
||||
flat = self.flatten()
|
||||
buffers = [torch.empty_like(flat) for _ in range(dist.get_world_size(group))]
|
||||
dist.all_gather(buffers, flat, group=group)
|
||||
unflat_buffers = [self.unflatten(buffer) for buffer in buffers]
|
||||
# transpose the list of list
|
||||
unflat_buffers = list(map(list, zip(*unflat_buffers)))
|
||||
for unflat_shards, tensor in zip(unflat_buffers, self._bucket):
|
||||
write_back_tensor = self._write_back_pairs[tensor]
|
||||
write_back_tensor.data.copy_(
|
||||
_flatten_dense_tensors(unflat_shards)[: write_back_tensor.numel()].reshape_as(write_back_tensor)
|
||||
)
|
||||
self.empty()
|
||||
|
|
|
@ -23,7 +23,7 @@ from colossalai.logging import get_dist_logger
|
|||
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
||||
|
||||
from ._utils import calculate_global_norm_from_list, flatten, has_inf_or_nan, release_param_grad, sync_tensor
|
||||
from .bookkeeping import BucketStore, GradientStore, ParameterStore
|
||||
from .bookkeeping import BucketStore, GradientStore, ParameterStore, TensorBucket
|
||||
|
||||
|
||||
class LowLevelZeroFP16MixedPrecisionMixin(FP16MixedPrecisionMixin):
|
||||
|
@ -694,34 +694,33 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
|||
for group_id in range(self.num_param_groups):
|
||||
release_param_grad(self._master_param_groups_of_current_rank[group_id])
|
||||
|
||||
tensor_bucket = TensorBucket(self._bucket_store.reduce_bucket_size)
|
||||
moe_tensor_bucket = TensorBucket(self._bucket_store.reduce_bucket_size)
|
||||
|
||||
# update working partition updated by the current rank
|
||||
device = get_accelerator().get_current_device()
|
||||
for group_id in range(self.num_param_groups):
|
||||
master_working_param = self.optim.param_groups[group_id]["params"]
|
||||
for idx, splited_param in enumerate(master_working_param):
|
||||
working_param = real_working_params[group_id][idx]
|
||||
param_to_gather = splited_param.to(device).to(self._dtype)
|
||||
if self._bucket_store.moe_extra_dp_pg is not None and is_moe_tensor(working_param):
|
||||
all_splited_param = [
|
||||
torch.zeros(splited_param.shape, device=device, dtype=self._dtype)
|
||||
for _ in range(self._bucket_store.moe_extra_dp_pg_size)
|
||||
]
|
||||
dist.all_gather(
|
||||
all_splited_param,
|
||||
splited_param.to(device).to(self._dtype),
|
||||
group=self._bucket_store.moe_extra_dp_pg,
|
||||
)
|
||||
try:
|
||||
moe_tensor_bucket.add_to_bucket(param_to_gather, write_back_tensor=working_param)
|
||||
except RuntimeError:
|
||||
moe_tensor_bucket.all_gather(self._bucket_store.moe_extra_dp_pg)
|
||||
moe_tensor_bucket.add_to_bucket(param_to_gather, write_back_tensor=working_param)
|
||||
else:
|
||||
all_splited_param = [
|
||||
torch.zeros(splited_param.shape, device=device, dtype=self._dtype)
|
||||
for _ in range(self._bucket_store.zero_world_size)
|
||||
]
|
||||
dist.all_gather(
|
||||
all_splited_param,
|
||||
splited_param.to(device).to(self._dtype),
|
||||
group=self._bucket_store.torch_pg,
|
||||
)
|
||||
working_param.data.copy_(flatten(all_splited_param)[: working_param.numel()].reshape_as(working_param))
|
||||
try:
|
||||
tensor_bucket.add_to_bucket(param_to_gather, write_back_tensor=working_param)
|
||||
except RuntimeError:
|
||||
tensor_bucket.all_gather(self._bucket_store.moe_extra_dp_pg)
|
||||
tensor_bucket.add_to_bucket(param_to_gather, write_back_tensor=working_param)
|
||||
self.optim.param_groups[group_id]["params"] = self._master_param_groups_of_current_rank[group_id]
|
||||
if not moe_tensor_bucket.is_empty():
|
||||
moe_tensor_bucket.all_gather(self._bucket_store.moe_extra_dp_pg)
|
||||
if not tensor_bucket.is_empty():
|
||||
tensor_bucket.all_gather(self._bucket_store.torch_pg)
|
||||
|
||||
def _compute_grad_norm(self, gradients: List[Tensor], norm_type: int = 2) -> float:
|
||||
r"""
|
||||
|
|
Loading…
Reference in New Issue