mirror of https://github.com/hpcaitech/ColossalAI
[Fix/Inference] Fix GQA Triton and Support Llama3 (#5624)
* [fix] GQA calling of flash decoding triton * fix kv cache alloc shape * fix rotary triton - GQA * fix sequence max length assigning * Sequence max length logic * fix scheduling and spec-dec * skip without import error * fix pytest - skip without ImportError --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>pull/5629/head
parent
ccf72797e3
commit
5d4c1fe8f5
|
@ -386,6 +386,7 @@ class BatchBucket:
|
||||||
seq_id, seq = next(seqs_iter)
|
seq_id, seq = next(seqs_iter)
|
||||||
assert seq.output_len >= n_tokens, "Revoking len exceeds the current output len of the sequence"
|
assert seq.output_len >= n_tokens, "Revoking len exceeds the current output len of the sequence"
|
||||||
seq.output_token_id = seq.output_token_id[:-n_tokens]
|
seq.output_token_id = seq.output_token_id[:-n_tokens]
|
||||||
|
seq.revoke_finished_status()
|
||||||
self._sequence_lengths[self._sequences_indexes[seq_id]] -= n_tokens
|
self._sequence_lengths[self._sequences_indexes[seq_id]] -= n_tokens
|
||||||
|
|
||||||
def clear(self, free_block_tables_fn: Optional[Callable[[torch.Tensor], None]]) -> List[int]:
|
def clear(self, free_block_tables_fn: Optional[Callable[[torch.Tensor], None]]) -> List[int]:
|
||||||
|
|
|
@ -518,7 +518,13 @@ class InferenceEngine:
|
||||||
"""
|
"""
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
if prompts is not None or prompts_token_ids is not None:
|
if prompts is not None or prompts_token_ids is not None:
|
||||||
self.add_request(request_ids=request_ids, prompts=prompts, prompts_token_ids=prompts_token_ids)
|
gen_config_dict = generation_config.to_dict() if generation_config is not None else {}
|
||||||
|
self.add_request(
|
||||||
|
request_ids=request_ids,
|
||||||
|
prompts=prompts,
|
||||||
|
prompts_token_ids=prompts_token_ids,
|
||||||
|
**gen_config_dict,
|
||||||
|
)
|
||||||
|
|
||||||
output_seqs_list = []
|
output_seqs_list = []
|
||||||
total_tokens_list = []
|
total_tokens_list = []
|
||||||
|
@ -573,6 +579,7 @@ class InferenceEngine:
|
||||||
request_ids: List[int] = None,
|
request_ids: List[int] = None,
|
||||||
prompts: List[str] = None,
|
prompts: List[str] = None,
|
||||||
prompts_token_ids: Union[List[int], torch.Tensor, np.ndarray] = None,
|
prompts_token_ids: Union[List[int], torch.Tensor, np.ndarray] = None,
|
||||||
|
**kwargs,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Add requests.
|
Add requests.
|
||||||
|
@ -629,6 +636,13 @@ class InferenceEngine:
|
||||||
else:
|
else:
|
||||||
prompt = prompts[i]
|
prompt = prompts[i]
|
||||||
|
|
||||||
|
max_length = kwargs.get("max_length", None)
|
||||||
|
max_new_tokens = kwargs.get("max_new_tokens", None)
|
||||||
|
if max_length is None and max_new_tokens is None:
|
||||||
|
max_new_tokens = self.generation_config.max_new_tokens or self.inference_config.max_output_len
|
||||||
|
elif max_length is not None:
|
||||||
|
max_new_tokens = max_length - len(prompts_token_ids[i])
|
||||||
|
|
||||||
sequence = Sequence(
|
sequence = Sequence(
|
||||||
request_id,
|
request_id,
|
||||||
prompt,
|
prompt,
|
||||||
|
@ -637,7 +651,7 @@ class InferenceEngine:
|
||||||
None,
|
None,
|
||||||
self.tokenizer.eos_token_id,
|
self.tokenizer.eos_token_id,
|
||||||
self.tokenizer.pad_token_id,
|
self.tokenizer.pad_token_id,
|
||||||
self.inference_config.max_output_len,
|
max_output_len=max_new_tokens,
|
||||||
)
|
)
|
||||||
self.request_handler.add_sequence(sequence)
|
self.request_handler.add_sequence(sequence)
|
||||||
|
|
||||||
|
|
|
@ -314,10 +314,11 @@ class RequestHandler:
|
||||||
|
|
||||||
def update_batch_finished(self, batch: BatchBucket, generation_config: GenerationConfig):
|
def update_batch_finished(self, batch: BatchBucket, generation_config: GenerationConfig):
|
||||||
for seq in batch.seqs_li:
|
for seq in batch.seqs_li:
|
||||||
if (
|
max_length = generation_config.max_length
|
||||||
seq.output_token_id[-1] == generation_config.eos_token_id
|
max_new_tokens = generation_config.max_new_tokens
|
||||||
or seq.output_len >= generation_config.max_length
|
if max_length is not None:
|
||||||
):
|
max_new_tokens = max_length - seq.input_len
|
||||||
|
if seq.output_token_id[-1] == generation_config.eos_token_id or seq.output_len >= max_new_tokens:
|
||||||
seq.mark_finished()
|
seq.mark_finished()
|
||||||
|
|
||||||
def check_unfinished_seqs(self) -> bool:
|
def check_unfinished_seqs(self) -> bool:
|
||||||
|
|
|
@ -38,7 +38,7 @@ class KVCacheManager:
|
||||||
The block table after block allocation might be:
|
The block table after block allocation might be:
|
||||||
| 0 | 1 | 2 | -1 | -1 | -1 |
|
| 0 | 1 | 2 | -1 | -1 | -1 |
|
||||||
Then the logical blocks with id 0, 1, and 2, are allocated for this sequence,
|
Then the logical blocks with id 0, 1, and 2, are allocated for this sequence,
|
||||||
and the physical caches, each with size of `block_size * head_num * head_size * elem_size` for a single layer,
|
and the physical caches, each with size of `block_size * kv_head_num * head_size * elem_size` for a single layer,
|
||||||
corresponding to these blocks will be used to read/write KV Caches in kernels.
|
corresponding to these blocks will be used to read/write KV Caches in kernels.
|
||||||
|
|
||||||
For a batch of sequences, the block tables after allocation might be:
|
For a batch of sequences, the block tables after allocation might be:
|
||||||
|
@ -64,9 +64,12 @@ class KVCacheManager:
|
||||||
self.elem_size_in_bytes = torch.tensor([], dtype=self.dtype).element_size()
|
self.elem_size_in_bytes = torch.tensor([], dtype=self.dtype).element_size()
|
||||||
self.num_layers = get_model_config_attr(model_config, "num_hidden_layers")
|
self.num_layers = get_model_config_attr(model_config, "num_hidden_layers")
|
||||||
self.head_num = get_model_config_attr(model_config, "num_attention_heads")
|
self.head_num = get_model_config_attr(model_config, "num_attention_heads")
|
||||||
|
self.kv_head_num = get_model_config_attr(model_config, "num_key_value_heads")
|
||||||
self.head_size = get_model_config_attr(model_config, "hidden_size") // self.head_num
|
self.head_size = get_model_config_attr(model_config, "hidden_size") // self.head_num
|
||||||
assert self.head_num % self.tp_size == 0, f"Cannot shard {self.head_num} heads with tp size {self.tp_size}"
|
assert (
|
||||||
self.head_num //= self.tp_size
|
self.kv_head_num % self.tp_size == 0
|
||||||
|
), f"Cannot shard {self.kv_head_num} heads with tp size {self.tp_size}"
|
||||||
|
self.kv_head_num //= self.tp_size
|
||||||
self.beam_width = config.beam_width
|
self.beam_width = config.beam_width
|
||||||
self.max_batch_size = config.max_batch_size
|
self.max_batch_size = config.max_batch_size
|
||||||
self.max_input_length = config.max_input_len
|
self.max_input_length = config.max_input_len
|
||||||
|
@ -80,9 +83,8 @@ class KVCacheManager:
|
||||||
self.num_blocks = self.max_blocks_per_sequence * self.max_batch_size * self.beam_width
|
self.num_blocks = self.max_blocks_per_sequence * self.max_batch_size * self.beam_width
|
||||||
|
|
||||||
# Physical cache allocation
|
# Physical cache allocation
|
||||||
alloc_shape = (self.num_blocks, self.head_num, self.block_size, self.head_size)
|
alloc_shape = (self.num_blocks, self.kv_head_num, self.block_size, self.head_size)
|
||||||
# if verbose:
|
self.logger.info(f"Allocating KV cache with shape: {alloc_shape} consisting of {self.num_blocks} blocks.")
|
||||||
# self.logger.info(f"Allocating KV cache with shape: {alloc_shape} consisting of {self.num_blocks} blocks.")
|
|
||||||
self._kv_caches = self._init_device_caches(alloc_shape)
|
self._kv_caches = self._init_device_caches(alloc_shape)
|
||||||
self.total_physical_cache_size_in_bytes = (
|
self.total_physical_cache_size_in_bytes = (
|
||||||
self.elem_size_in_bytes
|
self.elem_size_in_bytes
|
||||||
|
@ -90,9 +92,12 @@ class KVCacheManager:
|
||||||
* 2
|
* 2
|
||||||
* self.num_blocks
|
* self.num_blocks
|
||||||
* self.block_size
|
* self.block_size
|
||||||
* self.head_num
|
* self.kv_head_num
|
||||||
* self.head_size
|
* self.head_size
|
||||||
)
|
)
|
||||||
|
self.logger.info(
|
||||||
|
f"Allocated {self.total_physical_cache_size_in_bytes / GIGABYTE:.2f} GB of KV cache on device {self.device}."
|
||||||
|
)
|
||||||
# Logical cache blocks allocation
|
# Logical cache blocks allocation
|
||||||
self._available_blocks = self.num_blocks
|
self._available_blocks = self.num_blocks
|
||||||
self._cache_blocks = tuple(self._init_logical_caches())
|
self._cache_blocks = tuple(self._init_logical_caches())
|
||||||
|
@ -453,7 +458,7 @@ class KVCacheManager:
|
||||||
"""
|
"""
|
||||||
assert self._kv_caches is not None and len(self._kv_caches[0]) > 0
|
assert self._kv_caches is not None and len(self._kv_caches[0]) > 0
|
||||||
blocks = []
|
blocks = []
|
||||||
physical_block_size = self.elem_size_in_bytes * self.block_size * self.head_num * self.head_size
|
physical_block_size = self.elem_size_in_bytes * self.block_size * self.kv_head_num * self.head_size
|
||||||
k_ptrs = [
|
k_ptrs = [
|
||||||
self._kv_caches[0][layer_idx].data_ptr() - physical_block_size for layer_idx in range(self.num_layers)
|
self._kv_caches[0][layer_idx].data_ptr() - physical_block_size for layer_idx in range(self.num_layers)
|
||||||
]
|
]
|
||||||
|
|
|
@ -447,9 +447,9 @@ class NopadLlamaAttention(ParallelModule, LlamaAttention):
|
||||||
attn_qproj_w.dist_layout
|
attn_qproj_w.dist_layout
|
||||||
) # NOTE this is a hack for the right load/shard of qkv_weight(used in _load_from_state_dict)
|
) # NOTE this is a hack for the right load/shard of qkv_weight(used in _load_from_state_dict)
|
||||||
else:
|
else:
|
||||||
self.q_proj_weight = attn_qproj_w
|
self.q_proj_weight = nn.Parameter(attn_qproj_w.transpose(0, 1).contiguous())
|
||||||
self.k_proj_weight = attn_kproj_w
|
self.k_proj_weight = nn.Parameter(attn_kproj_w.transpose(0, 1).contiguous())
|
||||||
self.v_proj_weight = attn_vproj_w
|
self.v_proj_weight = nn.Parameter(attn_vproj_w.transpose(0, 1).contiguous())
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def from_native_module(
|
def from_native_module(
|
||||||
|
@ -638,6 +638,7 @@ class NopadLlamaAttention(ParallelModule, LlamaAttention):
|
||||||
mid_output=fd_inter_tensor.mid_output,
|
mid_output=fd_inter_tensor.mid_output,
|
||||||
mid_output_lse=fd_inter_tensor.mid_output_lse,
|
mid_output_lse=fd_inter_tensor.mid_output_lse,
|
||||||
sm_scale=sm_scale,
|
sm_scale=sm_scale,
|
||||||
|
kv_group_num=self.num_key_value_groups,
|
||||||
q_len=q_len,
|
q_len=q_len,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -117,6 +117,14 @@ class Sequence:
|
||||||
|
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def revoke_finished_status(self) -> None:
|
||||||
|
"""
|
||||||
|
Revoke the finished status of the sequence.
|
||||||
|
This is only used by speculative decoding for now.
|
||||||
|
"""
|
||||||
|
if RequestStatus.is_finished(self.status):
|
||||||
|
self.status = RequestStatus.RUNNING
|
||||||
|
|
||||||
def __hash__(self):
|
def __hash__(self):
|
||||||
return hash(self.request_id)
|
return hash(self.request_id)
|
||||||
|
|
||||||
|
|
|
@ -36,97 +36,91 @@ def rotary_embedding_kernel(
|
||||||
cos_stride,
|
cos_stride,
|
||||||
q_total_tokens,
|
q_total_tokens,
|
||||||
Q_HEAD_NUM: tl.constexpr,
|
Q_HEAD_NUM: tl.constexpr,
|
||||||
K_HEAD_NUM: tl.constexpr,
|
KV_GROUP_NUM: tl.constexpr,
|
||||||
HEAD_DIM: tl.constexpr,
|
HEAD_DIM: tl.constexpr,
|
||||||
BLOCK_HEAD: tl.constexpr,
|
BLOCK_TOKENS: tl.constexpr, # token range length
|
||||||
BLOCK_TOKENS: tl.constexpr,
|
|
||||||
):
|
):
|
||||||
block_head_index = tl.program_id(0)
|
cur_head_idx = tl.program_id(0)
|
||||||
block_token_index = tl.program_id(1)
|
cur_token_block_idx = tl.program_id(1)
|
||||||
|
|
||||||
tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
|
|
||||||
head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
|
|
||||||
|
|
||||||
|
tokens_range = cur_token_block_idx * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
|
||||||
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
||||||
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
||||||
|
|
||||||
|
off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride
|
||||||
|
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
|
||||||
|
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
|
||||||
|
|
||||||
off_q0 = (
|
off_q0 = (
|
||||||
tokens_range[:, None, None] * q_token_stride
|
tokens_range[:, None, None] * q_token_stride
|
||||||
+ head_range[None, :, None] * q_head_stride
|
+ cur_head_idx * q_head_stride
|
||||||
+ dim_range0[None, None, :] * head_dim_stride
|
+ dim_range0[None, None, :] * head_dim_stride
|
||||||
)
|
)
|
||||||
off_q1 = (
|
off_q1 = (
|
||||||
tokens_range[:, None, None] * q_token_stride
|
tokens_range[:, None, None] * q_token_stride
|
||||||
+ head_range[None, :, None] * q_head_stride
|
+ cur_head_idx * q_head_stride
|
||||||
+ dim_range1[None, None, :] * head_dim_stride
|
+ dim_range1[None, None, :] * head_dim_stride
|
||||||
)
|
)
|
||||||
off_k0 = (
|
|
||||||
tokens_range[:, None, None] * k_token_stride
|
|
||||||
+ head_range[None, :, None] * k_head_stride
|
|
||||||
+ dim_range0[None, None, :] * head_dim_stride
|
|
||||||
)
|
|
||||||
off_k1 = (
|
|
||||||
tokens_range[:, None, None] * k_token_stride
|
|
||||||
+ head_range[None, :, None] * k_head_stride
|
|
||||||
+ dim_range1[None, None, :] * head_dim_stride
|
|
||||||
)
|
|
||||||
|
|
||||||
loaded_q0 = tl.load(
|
loaded_q0 = tl.load(
|
||||||
q + off_q0,
|
q + off_q0,
|
||||||
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
||||||
other=0.0,
|
other=0.0,
|
||||||
)
|
)
|
||||||
loaded_q1 = tl.load(
|
loaded_q1 = tl.load(
|
||||||
q + off_q1,
|
q + off_q1,
|
||||||
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
||||||
other=0.0,
|
other=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
loaded_k0 = tl.load(
|
|
||||||
k + off_k0,
|
|
||||||
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
||||||
other=0.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
loaded_k1 = tl.load(
|
|
||||||
k + off_k1,
|
|
||||||
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
||||||
other=0.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride
|
|
||||||
|
|
||||||
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
|
|
||||||
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
|
|
||||||
|
|
||||||
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
|
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
|
||||||
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
|
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
|
||||||
|
|
||||||
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
|
|
||||||
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :]
|
|
||||||
|
|
||||||
# concat
|
|
||||||
tl.store(
|
tl.store(
|
||||||
q + off_q0,
|
q + off_q0,
|
||||||
out_q0,
|
out_q0,
|
||||||
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
||||||
)
|
)
|
||||||
tl.store(
|
tl.store(
|
||||||
q + off_q1,
|
q + off_q1,
|
||||||
out_q1,
|
out_q1,
|
||||||
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
mask=((cur_head_idx < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
||||||
)
|
|
||||||
tl.store(
|
|
||||||
k + off_k0,
|
|
||||||
out_k0,
|
|
||||||
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
||||||
)
|
|
||||||
tl.store(
|
|
||||||
k + off_k1,
|
|
||||||
out_k1,
|
|
||||||
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
handle_k = cur_head_idx % KV_GROUP_NUM == 0
|
||||||
|
if handle_k:
|
||||||
|
k_head_idx = cur_head_idx // KV_GROUP_NUM
|
||||||
|
off_k0 = (
|
||||||
|
tokens_range[:, None, None] * k_token_stride
|
||||||
|
+ k_head_idx * k_head_stride
|
||||||
|
+ dim_range0[None, None, :] * head_dim_stride
|
||||||
|
)
|
||||||
|
off_k1 = (
|
||||||
|
tokens_range[:, None, None] * k_token_stride
|
||||||
|
+ k_head_idx * k_head_stride
|
||||||
|
+ dim_range1[None, None, :] * head_dim_stride
|
||||||
|
)
|
||||||
|
loaded_k0 = tl.load(
|
||||||
|
k + off_k0,
|
||||||
|
mask=(tokens_range[:, None, None] < q_total_tokens),
|
||||||
|
other=0.0,
|
||||||
|
)
|
||||||
|
loaded_k1 = tl.load(
|
||||||
|
k + off_k1,
|
||||||
|
mask=(tokens_range[:, None, None] < q_total_tokens),
|
||||||
|
other=0.0,
|
||||||
|
)
|
||||||
|
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
|
||||||
|
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :]
|
||||||
|
tl.store(
|
||||||
|
k + off_k0,
|
||||||
|
out_k0,
|
||||||
|
mask=(tokens_range[:, None, None] < q_total_tokens),
|
||||||
|
)
|
||||||
|
tl.store(
|
||||||
|
k + off_k1,
|
||||||
|
out_k1,
|
||||||
|
mask=(tokens_range[:, None, None] < q_total_tokens),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@triton.jit
|
@triton.jit
|
||||||
def fused_rotary_embedding_kernel(
|
def fused_rotary_embedding_kernel(
|
||||||
|
@ -405,108 +399,74 @@ def decoding_fused_rotary_embedding_kernel(
|
||||||
bts_stride,
|
bts_stride,
|
||||||
btb_stride,
|
btb_stride,
|
||||||
block_size,
|
block_size,
|
||||||
Q_HEAD_NUM: tl.constexpr,
|
KV_GROUP_NUM: tl.constexpr,
|
||||||
HEAD_DIM: tl.constexpr,
|
HEAD_DIM: tl.constexpr,
|
||||||
):
|
):
|
||||||
block_head_index = tl.program_id(0)
|
cur_head_idx = tl.program_id(0)
|
||||||
if block_head_index >= Q_HEAD_NUM:
|
cur_token_idx = tl.program_id(1)
|
||||||
return
|
|
||||||
|
|
||||||
block_token_index = tl.program_id(1)
|
|
||||||
|
|
||||||
|
dim_range = tl.arange(0, HEAD_DIM)
|
||||||
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
||||||
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
||||||
total_dim_range = tl.arange(0, HEAD_DIM)
|
|
||||||
|
|
||||||
q_off_base = block_token_index * q_token_stride + block_head_index * q_head_stride
|
off_q = cur_token_idx * q_token_stride + cur_head_idx * q_head_stride
|
||||||
off_q0 = q_off_base + dim_range0 * head_dim_stride
|
off_q0 = off_q + dim_range0 * head_dim_stride
|
||||||
off_q1 = q_off_base + dim_range1 * head_dim_stride
|
off_q1 = off_q + dim_range1 * head_dim_stride
|
||||||
|
|
||||||
off_base = block_token_index * k_token_stride + block_head_index * k_head_stride
|
|
||||||
off_k0 = off_base + dim_range0 * head_dim_stride
|
|
||||||
off_k1 = off_base + dim_range1 * head_dim_stride
|
|
||||||
|
|
||||||
off_v = off_base + total_dim_range * head_dim_stride
|
|
||||||
|
|
||||||
loaded_q0 = tl.load(
|
|
||||||
q + off_q0,
|
|
||||||
)
|
|
||||||
loaded_q1 = tl.load(
|
|
||||||
q + off_q1,
|
|
||||||
)
|
|
||||||
|
|
||||||
loaded_k0 = tl.load(
|
|
||||||
k + off_k0,
|
|
||||||
)
|
|
||||||
|
|
||||||
loaded_k1 = tl.load(
|
|
||||||
k + off_k1,
|
|
||||||
)
|
|
||||||
|
|
||||||
loaded_v = tl.load(
|
|
||||||
v + off_v,
|
|
||||||
)
|
|
||||||
|
|
||||||
off_cos_sin = block_token_index * cos_token_stride + dim_range0 * cos_stride
|
|
||||||
|
|
||||||
|
loaded_q0 = tl.load(q + off_q0)
|
||||||
|
loaded_q1 = tl.load(q + off_q1)
|
||||||
|
off_cos_sin = cur_token_idx * cos_token_stride + dim_range0 * cos_stride
|
||||||
loaded_cos = tl.load(cos + off_cos_sin)
|
loaded_cos = tl.load(cos + off_cos_sin)
|
||||||
loaded_sin = tl.load(sin + off_cos_sin)
|
loaded_sin = tl.load(sin + off_cos_sin)
|
||||||
|
|
||||||
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
|
out_q0 = loaded_q0 * loaded_cos - loaded_q1 * loaded_sin
|
||||||
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
|
out_q1 = loaded_q0 * loaded_sin + loaded_q1 * loaded_cos
|
||||||
|
tl.store(q + off_q0, out_q0)
|
||||||
|
tl.store(q + off_q1, out_q1)
|
||||||
|
|
||||||
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
|
handle_k = cur_head_idx % KV_GROUP_NUM == 0
|
||||||
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos # total_tokens, head_num, head_dim
|
if handle_k:
|
||||||
|
cur_k_head_idx = cur_head_idx // KV_GROUP_NUM
|
||||||
|
off_kv = cur_token_idx * k_token_stride + cur_k_head_idx * k_head_stride
|
||||||
|
off_k0 = off_kv + dim_range0 * head_dim_stride
|
||||||
|
off_k1 = off_kv + dim_range1 * head_dim_stride
|
||||||
|
loaded_k0 = tl.load(k + off_k0)
|
||||||
|
loaded_k1 = tl.load(k + off_k1)
|
||||||
|
|
||||||
past_kv_seq_len = tl.load(context_lengths + block_token_index) - 1
|
out_k0 = loaded_k0 * loaded_cos - loaded_k1 * loaded_sin
|
||||||
|
out_k1 = loaded_k0 * loaded_sin + loaded_k1 * loaded_cos
|
||||||
|
|
||||||
last_block_idx = past_kv_seq_len // block_size
|
# NOTE The precondition here is that it's only for unpadded inputs during decoding stage,
|
||||||
block_ids = tl.load(BLOCK_TABLES + block_token_index * bts_stride + last_block_idx * btb_stride)
|
# and so that we could directly use the token index as the sequence index
|
||||||
offsets_in_last_block = past_kv_seq_len % block_size
|
past_kv_seq_len = tl.load(context_lengths + cur_token_idx) - 1
|
||||||
|
|
||||||
k_range0 = (
|
last_block_idx = past_kv_seq_len // block_size
|
||||||
block_ids * cache_b_stride
|
block_ids = tl.load(BLOCK_TABLES + cur_token_idx * bts_stride + last_block_idx * btb_stride)
|
||||||
+ block_head_index * cache_h_stride
|
offsets_in_last_block = past_kv_seq_len % block_size
|
||||||
+ offsets_in_last_block * cache_bs_stride
|
k_range0 = (
|
||||||
+ dim_range0 * cache_d_stride
|
block_ids * cache_b_stride
|
||||||
)
|
+ cur_k_head_idx * cache_h_stride
|
||||||
k_range1 = (
|
+ offsets_in_last_block * cache_bs_stride
|
||||||
block_ids * cache_b_stride
|
+ dim_range0 * cache_d_stride
|
||||||
+ block_head_index * cache_h_stride
|
)
|
||||||
+ offsets_in_last_block * cache_bs_stride
|
k_range1 = (
|
||||||
+ dim_range1 * cache_d_stride
|
block_ids * cache_b_stride
|
||||||
)
|
+ cur_k_head_idx * cache_h_stride
|
||||||
v_range = (
|
+ offsets_in_last_block * cache_bs_stride
|
||||||
block_ids * cache_b_stride
|
+ dim_range1 * cache_d_stride
|
||||||
+ block_head_index * cache_h_stride
|
)
|
||||||
+ offsets_in_last_block * cache_bs_stride
|
tl.store(k_cache + k_range0, out_k0)
|
||||||
+ total_dim_range * cache_d_stride
|
tl.store(k_cache + k_range1, out_k1)
|
||||||
)
|
|
||||||
|
|
||||||
tl.store(
|
off_v = off_kv + dim_range * head_dim_stride
|
||||||
v_cache + v_range,
|
loaded_v = tl.load(v + off_v)
|
||||||
loaded_v,
|
v_range = (
|
||||||
)
|
block_ids * cache_b_stride
|
||||||
|
+ cur_k_head_idx * cache_h_stride
|
||||||
tl.store(
|
+ offsets_in_last_block * cache_bs_stride
|
||||||
k_cache + k_range0,
|
+ dim_range * cache_d_stride
|
||||||
out_k0,
|
)
|
||||||
)
|
tl.store(v_cache + v_range, loaded_v)
|
||||||
|
|
||||||
tl.store(
|
|
||||||
k_cache + k_range1,
|
|
||||||
out_k1,
|
|
||||||
)
|
|
||||||
|
|
||||||
# concat
|
|
||||||
tl.store(
|
|
||||||
q + off_q0,
|
|
||||||
out_q0,
|
|
||||||
)
|
|
||||||
tl.store(
|
|
||||||
q + off_q1,
|
|
||||||
out_q1,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def rotary_embedding(
|
def rotary_embedding(
|
||||||
|
@ -521,7 +481,7 @@ def rotary_embedding(
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
q: query tensor, [total_tokens, head_num, head_dim]
|
q: query tensor, [total_tokens, head_num, head_dim]
|
||||||
k: key tensor, [total_tokens, head_num, head_dim]
|
k: key tensor, [total_tokens, kv_head_num, head_dim]
|
||||||
cos: cosine for rotary embedding, [max_position_len, head_dim]
|
cos: cosine for rotary embedding, [max_position_len, head_dim]
|
||||||
sin: sine for rotary embedding, [max_position_len, head_dim]
|
sin: sine for rotary embedding, [max_position_len, head_dim]
|
||||||
k_cache (torch.Tensor): Blocked key cache. [num_blocks, num_kv_heads, block_size, head_dim]
|
k_cache (torch.Tensor): Blocked key cache. [num_blocks, num_kv_heads, block_size, head_dim]
|
||||||
|
@ -530,32 +490,26 @@ def rotary_embedding(
|
||||||
"""
|
"""
|
||||||
q_total_tokens, q_head_num, head_dim = q.shape
|
q_total_tokens, q_head_num, head_dim = q.shape
|
||||||
assert q.size(0) == k.size(0)
|
assert q.size(0) == k.size(0)
|
||||||
BLOCK_HEAD = 4
|
|
||||||
BLOCK_TOKENS = 4
|
BLOCK_TOKENS = 4
|
||||||
|
|
||||||
if head_dim >= 1024:
|
if head_dim >= 512:
|
||||||
num_warps = 32
|
|
||||||
elif head_dim >= 512:
|
|
||||||
num_warps = 16
|
num_warps = 16
|
||||||
elif head_dim >= 256:
|
elif head_dim >= 256:
|
||||||
num_warps = 8
|
num_warps = 8
|
||||||
else:
|
else:
|
||||||
num_warps = 4
|
num_warps = 4
|
||||||
|
|
||||||
q_token_stride = q.stride(0)
|
k_head_num = k.size(1)
|
||||||
q_head_stride = q.stride(1)
|
q_token_stride, q_head_stride, head_dim_stride = q.stride()
|
||||||
head_dim_stride = q.stride(2)
|
k_token_stride, k_head_stride, _ = k.stride()
|
||||||
|
cos_token_stride, cos_stride = cos.stride()
|
||||||
|
|
||||||
k_token_stride = k.stride(0)
|
assert q_head_num % k_head_num == 0
|
||||||
k_head_stride = k.stride(1)
|
kv_group_num = q_head_num // k_head_num
|
||||||
|
|
||||||
k_head_num = q.shape[1]
|
|
||||||
|
|
||||||
cos_token_stride = cos.stride(0)
|
|
||||||
cos_stride = cos.stride(1)
|
|
||||||
if k_cache == None:
|
if k_cache == None:
|
||||||
grid = lambda META: (
|
grid = lambda META: (
|
||||||
triton.cdiv(q_head_num, META["BLOCK_HEAD"]),
|
q_head_num,
|
||||||
triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]),
|
triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]),
|
||||||
)
|
)
|
||||||
rotary_embedding_kernel[grid](
|
rotary_embedding_kernel[grid](
|
||||||
|
@ -572,9 +526,8 @@ def rotary_embedding(
|
||||||
cos_stride,
|
cos_stride,
|
||||||
q_total_tokens,
|
q_total_tokens,
|
||||||
Q_HEAD_NUM=q_head_num,
|
Q_HEAD_NUM=q_head_num,
|
||||||
K_HEAD_NUM=k_head_num,
|
KV_GROUP_NUM=kv_group_num,
|
||||||
HEAD_DIM=head_dim,
|
HEAD_DIM=head_dim,
|
||||||
BLOCK_HEAD=BLOCK_HEAD,
|
|
||||||
BLOCK_TOKENS=BLOCK_TOKENS,
|
BLOCK_TOKENS=BLOCK_TOKENS,
|
||||||
num_warps=num_warps,
|
num_warps=num_warps,
|
||||||
)
|
)
|
||||||
|
@ -624,23 +577,21 @@ def decoding_fused_rotary_embedding(
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
q: query tensor, [total_tokens, head_num, head_dim]
|
q: query tensor, [total_tokens, head_num, head_dim]
|
||||||
k: key tensor, [total_tokens, head_num, head_dim]
|
k: key tensor, [total_tokens, kv_head_num, head_dim]
|
||||||
v: value tensor, [total tokens, head_num, head_dim]
|
v: value tensor, [total tokens, kv_head_num, head_dim]
|
||||||
cos: cosine for rotary embedding, [max_position_len, head_dim]
|
cos: cosine for rotary embedding, [max_position_len, head_dim]
|
||||||
sin: sine for rotary embedding, [max_position_len, head_dim]
|
sin: sine for rotary embedding, [max_position_len, head_dim]
|
||||||
k_cache (torch.Tensor): Blocked key cache. [num_blocks, num_kv_heads, block_size, head_dim]
|
k_cache (torch.Tensor): Blocked key cache. [num_blocks, kv_head_num, block_size, head_dim]
|
||||||
v_cache (torch.Tensor): Blocked value cache. [num_blocks, num_kv_heads, block_size, head_dim]
|
v_cache (torch.Tensor): Blocked value cache. [num_blocks, kv_head_num, block_size, head_dim]
|
||||||
kv_lengths, Past key/value sequence lengths plus current sequence length for each sequence. [bsz]
|
kv_lengths, Past key/value sequence lengths plus current sequence length for each sequence. [bsz]
|
||||||
block_tables: Block tables for each sequence. [bsz, max_blocks_per_sequence]
|
block_tables: Block tables for each sequence. [bsz, max_blocks_per_sequence]
|
||||||
"""
|
"""
|
||||||
q_total_tokens, q_head_num, head_dim = q.shape
|
q_total_tokens, q_head_num, head_dim = q.shape
|
||||||
assert q.size(0) == k.size(0) == v.size(0)
|
assert q.size(0) == k.size(0) == v.size(0)
|
||||||
assert q.size(1) == k.size(1) == v.size(1)
|
assert k.size(1) == v.size(1)
|
||||||
assert k_cache.size(-1) == v_cache.size(-1)
|
assert k_cache.size(-1) == v_cache.size(-1)
|
||||||
|
|
||||||
if head_dim >= 1024:
|
if head_dim >= 512:
|
||||||
num_warps = 32
|
|
||||||
elif head_dim >= 512:
|
|
||||||
num_warps = 16
|
num_warps = 16
|
||||||
elif head_dim >= 256:
|
elif head_dim >= 256:
|
||||||
num_warps = 8
|
num_warps = 8
|
||||||
|
@ -653,10 +604,12 @@ def decoding_fused_rotary_embedding(
|
||||||
|
|
||||||
k_token_stride = k.stride(0)
|
k_token_stride = k.stride(0)
|
||||||
k_head_stride = k.stride(1)
|
k_head_stride = k.stride(1)
|
||||||
|
k_head_num = k.size(1)
|
||||||
|
kv_group_num = q_head_num // k_head_num
|
||||||
|
|
||||||
cos_token_stride = cos.stride(0)
|
cos_token_stride = cos.stride(0)
|
||||||
cos_stride = cos.stride(1)
|
cos_stride = cos.stride(1)
|
||||||
grid = (triton.next_power_of_2(q_head_num), q_total_tokens)
|
grid = (q_head_num, q_total_tokens)
|
||||||
decoding_fused_rotary_embedding_kernel[grid](
|
decoding_fused_rotary_embedding_kernel[grid](
|
||||||
q,
|
q,
|
||||||
k,
|
k,
|
||||||
|
@ -681,7 +634,7 @@ def decoding_fused_rotary_embedding(
|
||||||
block_tables.stride(0),
|
block_tables.stride(0),
|
||||||
block_tables.stride(1),
|
block_tables.stride(1),
|
||||||
k_cache.size(-2),
|
k_cache.size(-2),
|
||||||
Q_HEAD_NUM=q_head_num,
|
KV_GROUP_NUM=kv_group_num,
|
||||||
HEAD_DIM=head_dim,
|
HEAD_DIM=head_dim,
|
||||||
num_warps=num_warps,
|
num_warps=num_warps,
|
||||||
)
|
)
|
||||||
|
|
|
@ -133,8 +133,9 @@ def check_spec_dec(num_layers, max_length):
|
||||||
assert not engine.use_spec_dec
|
assert not engine.use_spec_dec
|
||||||
assert engine.drafter is None and engine.drafter_model is None
|
assert engine.drafter is None and engine.drafter_model is None
|
||||||
|
|
||||||
|
max_new_tokens = max_length - dummy_inputs.size(1)
|
||||||
assert len(out) == 1
|
assert len(out) == 1
|
||||||
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_length
|
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens
|
||||||
|
|
||||||
# test GLIDE model
|
# test GLIDE model
|
||||||
glide_config = GlideLlamaConfig(
|
glide_config = GlideLlamaConfig(
|
||||||
|
@ -152,7 +153,7 @@ def check_spec_dec(num_layers, max_length):
|
||||||
engine.clear_spec_dec()
|
engine.clear_spec_dec()
|
||||||
|
|
||||||
assert len(out) == 1
|
assert len(out) == 1
|
||||||
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_length
|
assert len(out_token_ids) == 1 and len(out_token_ids[0]) == max_new_tokens
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
|
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
|
||||||
|
@ -186,7 +187,7 @@ def test_tp_engine(prompt_template, do_sample):
|
||||||
|
|
||||||
|
|
||||||
@parameterize("num_layers", [1])
|
@parameterize("num_layers", [1])
|
||||||
@parameterize("max_length", [100])
|
@parameterize("max_length", [64])
|
||||||
def test_spec_dec(num_layers, max_length):
|
def test_spec_dec(num_layers, max_length):
|
||||||
spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length)
|
spawn(run_dist, 1, func_to_run=check_spec_dec, num_layers=num_layers, max_length=max_length)
|
||||||
|
|
||||||
|
|
|
@ -151,6 +151,16 @@ def test_flash_decoding_attention(
|
||||||
numpy_allclose(out_ref, output, rtol=rtol, atol=atol)
|
numpy_allclose(out_ref, output, rtol=rtol, atol=atol)
|
||||||
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
from vllm._C import ops as vllm_ops # noqa
|
||||||
|
|
||||||
|
HAS_VLLM = True
|
||||||
|
except ImportError:
|
||||||
|
HAS_VLLM = False
|
||||||
|
print("The subsequent test requires vllm. Please refer to https://github.com/vllm-project/vllm")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not HAS_VLLM, reason="requires vllm")
|
||||||
@pytest.mark.parametrize("BATCH_SIZE", [1, 4, 7, 32])
|
@pytest.mark.parametrize("BATCH_SIZE", [1, 4, 7, 32])
|
||||||
@pytest.mark.parametrize("BLOCK_SIZE", [8, 16, 32])
|
@pytest.mark.parametrize("BLOCK_SIZE", [8, 16, 32])
|
||||||
@pytest.mark.parametrize("MAX_NUM_BLOCKS_PER_SEQ", [1, 8, 32])
|
@pytest.mark.parametrize("MAX_NUM_BLOCKS_PER_SEQ", [1, 8, 32])
|
||||||
|
@ -166,11 +176,6 @@ def test_vllm_flash_decoding_attention(
|
||||||
torch.cuda.synchronize()
|
torch.cuda.synchronize()
|
||||||
torch.cuda.reset_peak_memory_stats()
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
|
||||||
try:
|
|
||||||
from vllm._C import ops as vllm_ops
|
|
||||||
except ImportError:
|
|
||||||
raise ImportError("Please install vllm from https://github.com/vllm-project/vllm")
|
|
||||||
|
|
||||||
NUM_KV_HEADS = NUM_ATTN_HEADS // KV_GROUP_NUM
|
NUM_KV_HEADS = NUM_ATTN_HEADS // KV_GROUP_NUM
|
||||||
assert isinstance(NUM_KV_HEADS, int) and NUM_KV_HEADS > 0, "Invalid number of kv heads."
|
assert isinstance(NUM_KV_HEADS, int) and NUM_KV_HEADS > 0, "Invalid number of kv heads."
|
||||||
MAX_SEQ_LEN = BLOCK_SIZE * MAX_NUM_BLOCKS_PER_SEQ
|
MAX_SEQ_LEN = BLOCK_SIZE * MAX_NUM_BLOCKS_PER_SEQ
|
||||||
|
|
Loading…
Reference in New Issue