mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] modify comm nodes' memory cost in construct chain (#2263)
* [autoparallel] align the data_ptr with the old version of auto activation checkpoint pipeline * [autoparallel] using fwd_time and bwd_time instead of fwd_flop and bwd_flop * [autoparallel] specifycomm nodes' memory cost in construct chainpull/2271/head
parent
1ea99b869e
commit
5c2ef9fc76
|
@ -4,6 +4,7 @@ from typing import Any, Dict, List, Tuple
|
|||
from torch import Tensor
|
||||
from torch.fx import Graph, Node
|
||||
|
||||
from colossalai.auto_parallel.passes.runtime_apply_pass import runtime_apply, runtime_comm_spec_apply
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import _find_nested_ckpt_regions
|
||||
from colossalai.fx.profiler import (
|
||||
activation_size,
|
||||
|
@ -131,8 +132,14 @@ class CheckpointSolverRotor(CheckpointSolverBase):
|
|||
fwd_mem_peak = 0
|
||||
for n in node:
|
||||
assert isinstance(n, Node), f'{n} is not a Node'
|
||||
if n.target == runtime_apply or n.target == runtime_comm_spec_apply:
|
||||
# in this case we need to calculate memory usage directly based on the statics that hooked in node.meta
|
||||
xbar += n.meta['fwd_mem_out']
|
||||
fwd_mem_peak = max(fwd_mem_peak, xbar + n.meta['fwd_mem_tmp'])
|
||||
else:
|
||||
xbar += calculate_fwd_tmp(n) + calculate_fwd_out(n)
|
||||
fwd_mem_peak = max(fwd_mem_peak, xbar + n.meta['fwd_mem_tmp'] + cls._extract_unused_output(n))
|
||||
|
||||
# minimum flop count is required
|
||||
ftime += max(calculate_fwd_time(n), 1.0)
|
||||
btime += max(calculate_bwd_time(n), 1.0)
|
||||
|
|
|
@ -151,6 +151,7 @@ class MetaInfoProp:
|
|||
# fetch other memory informations
|
||||
memory_cost = meta_info.memory_cost
|
||||
graph_info.fwd_mem_tmp = memory_cost.fwd.temp
|
||||
graph_info.fwd_mem_out = memory_cost.fwd.activation
|
||||
graph_info.bwd_mem_tmp = memory_cost.bwd.temp
|
||||
graph_info.bwd_mem_out = memory_cost.bwd.activation
|
||||
|
||||
|
|
|
@ -100,7 +100,7 @@ def calculate_fwd_time(n: Node) -> float:
|
|||
fwd_time (float): the result of `fwd_time`
|
||||
"""
|
||||
# TODO(super-dainiu): should divide the time by the number of GPUs as well as TFLOPs
|
||||
return n.meta["fwd_flop"]
|
||||
return n.meta["fwd_time"]
|
||||
|
||||
|
||||
def calculate_bwd_time(n: Node) -> float:
|
||||
|
@ -111,4 +111,4 @@ def calculate_bwd_time(n: Node) -> float:
|
|||
bwd_time (float): the result of `bwd_time`
|
||||
"""
|
||||
# TODO(super-dainiu): should divide the time by the number of GPUs as well as TFLOPs
|
||||
return n.meta["bwd_flop"]
|
||||
return n.meta["bwd_time"]
|
||||
|
|
Loading…
Reference in New Issue