mirror of https://github.com/hpcaitech/ColossalAI
Wenhao Chen
9 months ago
committed by
アマデウス
2 changed files with 940 additions and 0 deletions
@ -0,0 +1,604 @@
|
||||
from typing import List, Optional, Tuple, Union |
||||
|
||||
import torch |
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
||||
from transformers.modeling_outputs import ( |
||||
BaseModelOutputWithPast, |
||||
CausalLMOutputWithPast, |
||||
SequenceClassifierOutputWithPast, |
||||
) |
||||
from transformers.models.qwen2.modeling_qwen2 import ( |
||||
Qwen2ForCausalLM, |
||||
Qwen2ForSequenceClassification, |
||||
Qwen2Model, |
||||
_prepare_4d_causal_attention_mask, |
||||
_prepare_4d_causal_attention_mask_for_sdpa, |
||||
) |
||||
from transformers.utils import logging |
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager |
||||
from colossalai.shardformer.shard import ShardConfig |
||||
|
||||
from ..layer import cross_entropy_1d |
||||
|
||||
|
||||
class Qwen2PipelineForwards: |
||||
""" |
||||
This class serves as a micro library for forward function substitution of Qwen2 models |
||||
under pipeline setting. |
||||
""" |
||||
|
||||
@staticmethod |
||||
def qwen2_model_forward( |
||||
self: Qwen2Model, |
||||
input_ids: torch.LongTensor = None, |
||||
attention_mask: Optional[torch.Tensor] = None, |
||||
position_ids: Optional[torch.LongTensor] = None, |
||||
past_key_values: Optional[List[torch.FloatTensor]] = None, |
||||
inputs_embeds: Optional[torch.FloatTensor] = None, |
||||
use_cache: Optional[bool] = None, |
||||
output_attentions: Optional[bool] = None, |
||||
output_hidden_states: Optional[bool] = None, |
||||
return_dict: Optional[bool] = None, |
||||
stage_manager: Optional[PipelineStageManager] = None, |
||||
hidden_states: Optional[torch.FloatTensor] = None, |
||||
stage_index: Optional[List[int]] = None, |
||||
shard_config: ShardConfig = None, |
||||
): |
||||
logger = logging.get_logger(__name__) |
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
||||
output_hidden_states = ( |
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
||||
) |
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache |
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
||||
|
||||
# retrieve input_ids and inputs_embeds |
||||
if stage_manager.is_first_stage(): |
||||
if input_ids is not None and inputs_embeds is not None: |
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
||||
elif input_ids is not None: |
||||
batch_size, seq_length = input_ids.shape |
||||
elif inputs_embeds is not None: |
||||
batch_size, seq_length, _ = inputs_embeds.shape |
||||
else: |
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
||||
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device |
||||
if inputs_embeds is None: |
||||
inputs_embeds = self.embed_tokens(input_ids) |
||||
hidden_states = inputs_embeds |
||||
else: |
||||
input_shape = hidden_states.shape[:-1] |
||||
batch_size, seq_length = input_shape |
||||
device = hidden_states.device |
||||
|
||||
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
||||
if output_attentions: |
||||
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
||||
output_attentions = False |
||||
if output_hidden_states: |
||||
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
||||
output_hidden_states = False |
||||
if use_cache: |
||||
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.") |
||||
use_cache = False |
||||
|
||||
assert past_key_values is None, "past_key_values is not supported for Qwen2 models at the moment." |
||||
|
||||
past_key_values_length = 0 |
||||
if position_ids is None: |
||||
position_ids = torch.arange( |
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
||||
) |
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
||||
else: |
||||
position_ids = position_ids.view(-1, seq_length).long() |
||||
|
||||
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: |
||||
is_padding_right = attention_mask[:, -1].sum().item() != batch_size |
||||
if is_padding_right: |
||||
raise ValueError( |
||||
"You are attempting to perform batched generation with padding_side='right'" |
||||
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to " |
||||
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
||||
) |
||||
|
||||
if self._attn_implementation == "flash_attention_2": |
||||
# 2d mask is passed through the layers |
||||
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
||||
elif self._attn_implementation == "sdpa" and not output_attentions: |
||||
# output_attentions=True can not be supported when using SDPA, and we fall back on |
||||
# the manual implementation that requires a 4D causal mask in all cases. |
||||
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
||||
attention_mask, |
||||
(batch_size, seq_length), |
||||
inputs_embeds, |
||||
past_key_values_length, |
||||
) |
||||
else: |
||||
# 4d mask is passed through the layers |
||||
attention_mask = _prepare_4d_causal_attention_mask( |
||||
attention_mask, |
||||
(batch_size, seq_length), |
||||
inputs_embeds, |
||||
past_key_values_length, |
||||
sliding_window=self.config.sliding_window, |
||||
) |
||||
|
||||
if self.gradient_checkpointing and self.training: |
||||
if use_cache: |
||||
logger.warning_once( |
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
||||
) |
||||
use_cache = False |
||||
|
||||
# decoder layers |
||||
all_hidden_states = () if output_hidden_states else None |
||||
all_self_attns = () if output_attentions else None |
||||
next_decoder_cache = None |
||||
|
||||
start_idx, end_idx = stage_index[0], stage_index[1] |
||||
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx): |
||||
if output_hidden_states: |
||||
all_hidden_states += (hidden_states,) |
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None |
||||
|
||||
if self.gradient_checkpointing and self.training: |
||||
|
||||
def create_custom_forward(module): |
||||
def custom_forward(*inputs): |
||||
# None for past_key_value |
||||
return module(*inputs, output_attentions, None) |
||||
|
||||
return custom_forward |
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint( |
||||
create_custom_forward(decoder_layer), |
||||
hidden_states, |
||||
attention_mask, |
||||
position_ids, |
||||
None, |
||||
) |
||||
else: |
||||
layer_outputs = decoder_layer( |
||||
hidden_states, |
||||
attention_mask=attention_mask, |
||||
position_ids=position_ids, |
||||
past_key_value=past_key_value, |
||||
output_attentions=output_attentions, |
||||
use_cache=use_cache, |
||||
) |
||||
|
||||
hidden_states = layer_outputs[0] |
||||
|
||||
if use_cache: |
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
||||
|
||||
if output_attentions: |
||||
all_self_attns += (layer_outputs[1],) |
||||
|
||||
if stage_manager.is_last_stage(): |
||||
hidden_states = self.norm(hidden_states) |
||||
|
||||
# add hidden states from the last decoder layer |
||||
if output_hidden_states: |
||||
all_hidden_states += (hidden_states,) |
||||
|
||||
next_cache = next_decoder_cache if use_cache else None |
||||
|
||||
if stage_manager.is_last_stage(): |
||||
if not return_dict: |
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
||||
return BaseModelOutputWithPast( |
||||
last_hidden_state=hidden_states, |
||||
past_key_values=next_cache, |
||||
hidden_states=all_hidden_states, |
||||
attentions=all_self_attns, |
||||
) |
||||
# always return dict for imediate stage |
||||
return {"hidden_states": hidden_states} |
||||
|
||||
@staticmethod |
||||
def qwen2_for_causal_lm_forward( |
||||
self: Qwen2ForCausalLM, |
||||
input_ids: torch.LongTensor = None, |
||||
attention_mask: Optional[torch.Tensor] = None, |
||||
position_ids: Optional[torch.LongTensor] = None, |
||||
past_key_values: Optional[List[torch.FloatTensor]] = None, |
||||
inputs_embeds: Optional[torch.FloatTensor] = None, |
||||
labels: Optional[torch.LongTensor] = None, |
||||
use_cache: Optional[bool] = None, |
||||
output_attentions: Optional[bool] = None, |
||||
output_hidden_states: Optional[bool] = None, |
||||
return_dict: Optional[bool] = None, |
||||
stage_manager: Optional[PipelineStageManager] = None, |
||||
hidden_states: Optional[torch.FloatTensor] = None, |
||||
stage_index: Optional[List[int]] = None, |
||||
shard_config: ShardConfig = None, |
||||
): |
||||
r""" |
||||
Args: |
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
||||
|
||||
Returns: |
||||
|
||||
Example: |
||||
|
||||
```python |
||||
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM |
||||
|
||||
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
||||
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
||||
|
||||
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
||||
>>> inputs = tokenizer(prompt, return_tensors="pt") |
||||
|
||||
>>> # Generate |
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
||||
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
||||
```""" |
||||
logger = logging.get_logger(__name__) |
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
||||
output_hidden_states = ( |
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
||||
) |
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
||||
|
||||
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
||||
if output_attentions: |
||||
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
||||
output_attentions = False |
||||
if output_hidden_states: |
||||
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
||||
output_hidden_states = False |
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) |
||||
outputs = Qwen2PipelineForwards.qwen2_model_forward( |
||||
self.model, |
||||
input_ids=input_ids, |
||||
attention_mask=attention_mask, |
||||
position_ids=position_ids, |
||||
past_key_values=past_key_values, |
||||
inputs_embeds=inputs_embeds, |
||||
use_cache=use_cache, |
||||
output_attentions=output_attentions, |
||||
output_hidden_states=output_hidden_states, |
||||
return_dict=return_dict, |
||||
stage_manager=stage_manager, |
||||
hidden_states=hidden_states, |
||||
stage_index=stage_index, |
||||
) |
||||
|
||||
if stage_manager.is_last_stage(): |
||||
hidden_states = outputs[0] |
||||
logits = self.lm_head(hidden_states) |
||||
loss = None |
||||
if labels is not None: |
||||
# Shift so that tokens < n predict n |
||||
shift_logits = logits[..., :-1, :].contiguous() |
||||
shift_labels = labels[..., 1:].contiguous() |
||||
# Flatten the tokens |
||||
loss_fct = CrossEntropyLoss() |
||||
shift_labels = shift_labels.view(-1) |
||||
# Enable model parallelism |
||||
shift_labels = shift_labels.to(shift_logits.device) |
||||
if shard_config.enable_tensor_parallelism: |
||||
new_vocab_size = logits.shape[-1] |
||||
shift_logits = shift_logits.view(-1, new_vocab_size) |
||||
loss = cross_entropy_1d( |
||||
shift_logits, shift_labels, process_group=shard_config.tensor_parallel_process_group |
||||
) |
||||
else: |
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
||||
loss = loss_fct(shift_logits, shift_labels) |
||||
|
||||
if not return_dict: |
||||
output = (logits,) + outputs[1:] |
||||
return (loss,) + output if loss is not None else output |
||||
|
||||
return CausalLMOutputWithPast( |
||||
loss=loss, |
||||
logits=logits, |
||||
past_key_values=outputs.past_key_values, |
||||
hidden_states=outputs.hidden_states, |
||||
attentions=outputs.attentions, |
||||
) |
||||
else: |
||||
hidden_states = outputs.get("hidden_states") |
||||
return {"hidden_states": hidden_states} |
||||
|
||||
@staticmethod |
||||
def qwen2_for_sequence_classification_forward( |
||||
self: Qwen2ForSequenceClassification, |
||||
input_ids: torch.LongTensor = None, |
||||
attention_mask: Optional[torch.Tensor] = None, |
||||
position_ids: Optional[torch.LongTensor] = None, |
||||
past_key_values: Optional[List[torch.FloatTensor]] = None, |
||||
inputs_embeds: Optional[torch.FloatTensor] = None, |
||||
labels: Optional[torch.LongTensor] = None, |
||||
use_cache: Optional[bool] = None, |
||||
output_attentions: Optional[bool] = None, |
||||
output_hidden_states: Optional[bool] = None, |
||||
return_dict: Optional[bool] = None, |
||||
stage_manager: Optional[PipelineStageManager] = None, |
||||
hidden_states: Optional[torch.FloatTensor] = None, |
||||
stage_index: Optional[List[int]] = None, |
||||
shard_config: ShardConfig = None, |
||||
): |
||||
r""" |
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
||||
""" |
||||
logger = logging.get_logger(__name__) |
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
||||
|
||||
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future. |
||||
if output_attentions: |
||||
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.") |
||||
output_attentions = False |
||||
if output_hidden_states: |
||||
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.") |
||||
output_hidden_states = False |
||||
|
||||
transformer_outputs = Qwen2PipelineForwards.qwen2_model_forward( |
||||
self.model, |
||||
input_ids, |
||||
attention_mask=attention_mask, |
||||
position_ids=position_ids, |
||||
past_key_values=past_key_values, |
||||
inputs_embeds=inputs_embeds, |
||||
use_cache=use_cache, |
||||
output_attentions=output_attentions, |
||||
output_hidden_states=output_hidden_states, |
||||
return_dict=return_dict, |
||||
stage_manager=stage_manager, |
||||
hidden_states=hidden_states, |
||||
stage_index=stage_index, |
||||
) |
||||
|
||||
if input_ids is not None: |
||||
batch_size = input_ids.shape[0] |
||||
elif inputs_embeds is not None: |
||||
batch_size = inputs_embeds.shape[0] |
||||
else: |
||||
batch_size = hidden_states.shape[0] |
||||
|
||||
if stage_manager.is_last_stage(): |
||||
hidden_states = transformer_outputs[0] |
||||
logits = self.score(hidden_states) |
||||
|
||||
if self.config.pad_token_id is None and batch_size != 1: |
||||
print(self.config.pad_token_id) |
||||
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
||||
if self.config.pad_token_id is None: |
||||
sequence_lengths = -1 |
||||
else: |
||||
if input_ids is not None: |
||||
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) |
||||
else: |
||||
sequence_lengths = -1 |
||||
|
||||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
||||
|
||||
loss = None |
||||
if labels is not None: |
||||
labels = labels.to(logits.device) |
||||
if self.config.problem_type is None: |
||||
if self.num_labels == 1: |
||||
self.config.problem_type = "regression" |
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
||||
self.config.problem_type = "single_label_classification" |
||||
else: |
||||
self.config.problem_type = "multi_label_classification" |
||||
|
||||
if self.config.problem_type == "regression": |
||||
loss_fct = MSELoss() |
||||
if self.num_labels == 1: |
||||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
||||
else: |
||||
loss = loss_fct(pooled_logits, labels) |
||||
elif self.config.problem_type == "single_label_classification": |
||||
loss_fct = CrossEntropyLoss() |
||||
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
||||
elif self.config.problem_type == "multi_label_classification": |
||||
loss_fct = BCEWithLogitsLoss() |
||||
loss = loss_fct(pooled_logits, labels) |
||||
if not return_dict: |
||||
output = (pooled_logits,) + transformer_outputs[1:] |
||||
return ((loss,) + output) if loss is not None else output |
||||
|
||||
return SequenceClassifierOutputWithPast( |
||||
loss=loss, |
||||
logits=pooled_logits, |
||||
past_key_values=transformer_outputs.past_key_values, |
||||
hidden_states=transformer_outputs.hidden_states, |
||||
attentions=transformer_outputs.attentions, |
||||
) |
||||
|
||||
else: |
||||
hidden_states = transformer_outputs.get("hidden_states") |
||||
return {"hidden_states": hidden_states} |
||||
|
||||
|
||||
def get_qwen2_flash_attention_forward(shard_config: ShardConfig): |
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, apply_rotary_pos_emb, repeat_kv |
||||
|
||||
from colossalai.nn.layer.colo_attention import AttnMaskType, ColoAttention |
||||
|
||||
def forward( |
||||
self: Qwen2Attention, |
||||
hidden_states: torch.Tensor, |
||||
attention_mask: Optional[torch.Tensor] = None, |
||||
position_ids: Optional[torch.LongTensor] = None, |
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
||||
output_attentions: bool = False, |
||||
use_cache: bool = False, |
||||
**kwargs, |
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
||||
bsz, q_len, _ = hidden_states.size() |
||||
|
||||
query_states = self.q_proj(hidden_states) |
||||
key_states = self.k_proj(hidden_states) |
||||
value_states = self.v_proj(hidden_states) |
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
||||
|
||||
kv_seq_len = key_states.shape[-2] |
||||
if past_key_value is not None: |
||||
kv_seq_len += past_key_value[0].shape[-2] |
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
||||
|
||||
assert past_key_value is None, "past_key_value is not supported for Qwen2 models at the moment." |
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None |
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads |
||||
key_states = repeat_kv(key_states, self.num_key_value_groups) |
||||
value_states = repeat_kv(value_states, self.num_key_value_groups) |
||||
|
||||
me_input_shape = (bsz, q_len, self.num_heads, self.head_dim) |
||||
query_states = query_states.transpose(1, 2).contiguous().view(*me_input_shape) |
||||
key_states = key_states.transpose(1, 2).contiguous().view(*me_input_shape) |
||||
value_states = value_states.transpose(1, 2).contiguous().view(*me_input_shape) |
||||
|
||||
flash_attention_mask = None |
||||
attn_mask_type = AttnMaskType.causal |
||||
if not getattr(shard_config, "causal_lm", False) and attention_mask != None: |
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
||||
raise ValueError( |
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
||||
) |
||||
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous() |
||||
attn_mask_type = AttnMaskType.paddedcausal |
||||
|
||||
attention = ColoAttention(embed_dim=self.hidden_size, num_heads=self.num_heads) |
||||
attn_output = attention( |
||||
query_states, |
||||
key_states, |
||||
value_states, |
||||
attn_mask=flash_attention_mask, |
||||
attn_mask_type=attn_mask_type, |
||||
origin_attn_mask=attention_mask, |
||||
) |
||||
|
||||
attn_output = self.o_proj(attn_output) |
||||
|
||||
return attn_output, None, past_key_value |
||||
|
||||
return forward |
||||
|
||||
|
||||
def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig): |
||||
from transformers import Qwen2ForCausalLM |
||||
|
||||
def forward( |
||||
self: Qwen2ForCausalLM, |
||||
input_ids: torch.LongTensor = None, |
||||
attention_mask: Optional[torch.Tensor] = None, |
||||
position_ids: Optional[torch.LongTensor] = None, |
||||
past_key_values: Optional[List[torch.FloatTensor]] = None, |
||||
inputs_embeds: Optional[torch.FloatTensor] = None, |
||||
labels: Optional[torch.LongTensor] = None, |
||||
use_cache: Optional[bool] = None, |
||||
output_attentions: Optional[bool] = None, |
||||
output_hidden_states: Optional[bool] = None, |
||||
return_dict: Optional[bool] = None, |
||||
) -> Union[Tuple, CausalLMOutputWithPast]: |
||||
r""" |
||||
Args: |
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
||||
|
||||
Returns: |
||||
|
||||
Example: |
||||
|
||||
```python |
||||
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM |
||||
|
||||
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
||||
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
||||
|
||||
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
||||
>>> inputs = tokenizer(prompt, return_tensors="pt") |
||||
|
||||
>>> # Generate |
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
||||
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
||||
```""" |
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
||||
output_hidden_states = ( |
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
||||
) |
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) |
||||
outputs = self.model( |
||||
input_ids=input_ids, |
||||
attention_mask=attention_mask, |
||||
position_ids=position_ids, |
||||
past_key_values=past_key_values, |
||||
inputs_embeds=inputs_embeds, |
||||
use_cache=use_cache, |
||||
output_attentions=output_attentions, |
||||
output_hidden_states=output_hidden_states, |
||||
return_dict=return_dict, |
||||
) |
||||
|
||||
hidden_states = outputs[0] |
||||
logits = self.lm_head(hidden_states) |
||||
logits = logits.float() |
||||
|
||||
loss = None |
||||
if labels is not None: |
||||
# Shift so that tokens < n predict n |
||||
shift_logits = logits[..., :-1, :].contiguous() |
||||
shift_labels = labels[..., 1:].contiguous() |
||||
# Flatten the tokens |
||||
loss_fct = CrossEntropyLoss() |
||||
shift_labels = shift_labels.view(-1) |
||||
# Enable model parallelism |
||||
shift_labels = shift_labels.to(shift_logits.device) |
||||
if shard_config.enable_tensor_parallelism: |
||||
new_vocab_size = logits.shape[-1] |
||||
shift_logits = shift_logits.view(-1, new_vocab_size) |
||||
loss = cross_entropy_1d( |
||||
shift_logits, shift_labels, process_group=shard_config.tensor_parallel_process_group |
||||
) |
||||
else: |
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
||||
loss = loss_fct(shift_logits, shift_labels) |
||||
|
||||
if not return_dict: |
||||
output = (logits,) + outputs[1:] |
||||
return (loss,) + output if loss is not None else output |
||||
|
||||
return CausalLMOutputWithPast( |
||||
loss=loss, |
||||
logits=logits, |
||||
past_key_values=outputs.past_key_values, |
||||
hidden_states=outputs.hidden_states, |
||||
attentions=outputs.attentions, |
||||
) |
||||
|
||||
return forward |
@ -0,0 +1,336 @@
|
||||
import warnings |
||||
from functools import partial |
||||
from typing import Callable, Dict, List, Union |
||||
|
||||
import torch.nn as nn |
||||
from torch import Tensor |
||||
from torch.nn import Module |
||||
|
||||
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col, Linear1D_Row, RMSNorm, VocabParallelEmbedding1D |
||||
|
||||
from ..modeling.qwen2 import ( |
||||
Qwen2PipelineForwards, |
||||
get_lm_forward_with_dist_cross_entropy, |
||||
get_qwen2_flash_attention_forward, |
||||
) |
||||
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription |
||||
|
||||
__all__ = ["Qwen2Policy", "Qwen2ForCausalLMPolicy", "Qwen2ForSequenceClassificationPolicy"] |
||||
|
||||
|
||||
class Qwen2Policy(Policy): |
||||
def config_sanity_check(self): |
||||
pass |
||||
|
||||
def preprocess(self): |
||||
if self.shard_config.enable_tensor_parallelism: |
||||
# Resize embedding |
||||
vocab_size = self.model.config.vocab_size |
||||
world_size = self.shard_config.tensor_parallel_size |
||||
|
||||
if vocab_size % world_size != 0: |
||||
new_vocab_size = vocab_size + world_size - vocab_size % world_size |
||||
self.model.resize_token_embeddings(new_vocab_size) |
||||
|
||||
return self.model |
||||
|
||||
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]: |
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2DecoderLayer, Qwen2Model |
||||
|
||||
policy = {} |
||||
|
||||
norm_cls = FusedRMSNorm if self.shard_config.enable_fused_normalization else RMSNorm |
||||
|
||||
if self.shard_config.enable_sequence_parallelism: |
||||
self.shard_config.enable_sequence_parallelism = False |
||||
warnings.warn("Qwen2 doesn't support sequence parallelism now, will ignore the sequence parallelism flag.") |
||||
|
||||
if self.shard_config.enable_tensor_parallelism: |
||||
decoder_attribute_replacement = { |
||||
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size, |
||||
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size, |
||||
} |
||||
if getattr(self.model.config, "num_key_value_heads", False): |
||||
decoder_attribute_replacement["self_attn.num_key_value_heads"] = ( |
||||
self.model.config.num_key_value_heads // self.shard_config.tensor_parallel_size |
||||
) |
||||
|
||||
policy[Qwen2DecoderLayer] = ModulePolicyDescription( |
||||
attribute_replacement=decoder_attribute_replacement, |
||||
sub_module_replacement=[ |
||||
SubModuleReplacementDescription( |
||||
suffix="self_attn.q_proj", |
||||
target_module=Linear1D_Col, |
||||
), |
||||
SubModuleReplacementDescription( |
||||
suffix="self_attn.k_proj", |
||||
target_module=Linear1D_Col, |
||||
), |
||||
SubModuleReplacementDescription( |
||||
suffix="self_attn.v_proj", |
||||
target_module=Linear1D_Col, |
||||
), |
||||
SubModuleReplacementDescription( |
||||
suffix="self_attn.o_proj", |
||||
target_module=Linear1D_Row, |
||||
), |
||||
SubModuleReplacementDescription( |
||||
suffix="mlp.gate_proj", |
||||
target_module=Linear1D_Col, |
||||
), |
||||
SubModuleReplacementDescription( |
||||
suffix="mlp.up_proj", |
||||
target_module=Linear1D_Col, |
||||
), |
||||
SubModuleReplacementDescription( |
||||
suffix="mlp.down_proj", |
||||
target_module=Linear1D_Row, |
||||
), |
||||
], |
||||
) |
||||
|
||||
self.append_or_create_submodule_replacement( |
||||
description=SubModuleReplacementDescription( |
||||
suffix="embed_tokens", |
||||
target_module=VocabParallelEmbedding1D, |
||||
), |
||||
policy=policy, |
||||
target_key=Qwen2Model, |
||||
) |
||||
|
||||
# optimization configuration |
||||
self.append_or_create_submodule_replacement( |
||||
description=[ |
||||
SubModuleReplacementDescription( |
||||
suffix="input_layernorm", |
||||
target_module=norm_cls, |
||||
), |
||||
SubModuleReplacementDescription( |
||||
suffix="post_attention_layernorm", |
||||
target_module=norm_cls, |
||||
), |
||||
], |
||||
policy=policy, |
||||
target_key=Qwen2DecoderLayer, |
||||
) |
||||
|
||||
self.append_or_create_submodule_replacement( |
||||
description=SubModuleReplacementDescription( |
||||
suffix="norm", |
||||
target_module=norm_cls, |
||||
), |
||||
policy=policy, |
||||
target_key=Qwen2Model, |
||||
) |
||||
|
||||
# use flash attention |
||||
if self.shard_config.enable_flash_attention: |
||||
self.append_or_create_method_replacement( |
||||
description={ |
||||
"forward": get_qwen2_flash_attention_forward(self.shard_config), |
||||
}, |
||||
policy=policy, |
||||
target_key=Qwen2Attention, |
||||
) |
||||
|
||||
return policy |
||||
|
||||
def postprocess(self): |
||||
return self.model |
||||
|
||||
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None: |
||||
"""If under pipeline parallel setting, replacing the original forward method of huggingface |
||||
to customized forward method, and add this changing to policy.""" |
||||
if self.pipeline_stage_manager is None: |
||||
return |
||||
|
||||
stage_manager = self.pipeline_stage_manager |
||||
if self.model.__class__.__name__ == "Qwen2Model": |
||||
module = self.model |
||||
else: |
||||
module = self.model.model |
||||
|
||||
if stage_manager.is_interleave: |
||||
layers_per_stage = self.distribute_layers( |
||||
len(module.layers), stage_manager.num_stages * stage_manager.num_model_chunks |
||||
) |
||||
stage_manager.stage_indices = Policy.get_stage_index( |
||||
layers_per_stage, |
||||
stage_manager.stage, |
||||
num_model_chunks=stage_manager.num_model_chunks, |
||||
num_stages=stage_manager.num_stages, |
||||
) |
||||
method_replacement = { |
||||
"forward": partial(new_forward, stage_manager=stage_manager, shard_config=self.shard_config) |
||||
} |
||||
|
||||
else: |
||||
layers_per_stage = Policy.distribute_layers(len(module.layers), stage_manager.num_stages) |
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage) |
||||
method_replacement = { |
||||
"forward": partial( |
||||
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config |
||||
) |
||||
} |
||||
self.append_or_create_method_replacement( |
||||
description=method_replacement, policy=policy, target_key=model_cls |
||||
) |
||||
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls) |
||||
|
||||
def get_held_layers(self) -> List[Module]: |
||||
"""Get pipeline layers for current stage.""" |
||||
assert self.pipeline_stage_manager is not None |
||||
|
||||
if self.model.__class__.__name__ == "Qwen2Model": |
||||
module = self.model |
||||
else: |
||||
module = self.model.model |
||||
|
||||
stage_manager = self.pipeline_stage_manager |
||||
|
||||
held_layers = [] |
||||
if stage_manager.is_interleave: |
||||
assert stage_manager.num_model_chunks is not None |
||||
layers_per_stage = self.distribute_layers( |
||||
len(module.layers), stage_manager.num_stages * stage_manager.num_model_chunks |
||||
) |
||||
stage_indices = Policy.get_stage_index( |
||||
layers_per_stage, |
||||
stage_manager.stage, |
||||
num_model_chunks=stage_manager.num_model_chunks, |
||||
num_stages=stage_manager.num_stages, |
||||
) |
||||
if stage_manager.is_first_stage(ignore_chunk=True): |
||||
held_layers.append(module.embed_tokens) |
||||
for start_idx, end_idx in stage_indices: |
||||
held_layers.extend(module.layers[start_idx:end_idx]) |
||||
if stage_manager.is_last_stage(ignore_chunk=True): |
||||
held_layers.append(module.norm) |
||||
|
||||
else: |
||||
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages) |
||||
if stage_manager.is_first_stage(): |
||||
held_layers.append(module.embed_tokens) |
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage) |
||||
held_layers.extend(module.layers[start_idx:end_idx]) |
||||
if stage_manager.is_last_stage(): |
||||
held_layers.append(module.norm) |
||||
|
||||
return held_layers |
||||
|
||||
|
||||
class Qwen2ModelPolicy(Qwen2Policy): |
||||
def module_policy(self): |
||||
policy = super().module_policy() |
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model |
||||
|
||||
if self.pipeline_stage_manager: |
||||
# set None as default |
||||
self.set_pipeline_forward( |
||||
model_cls=Qwen2Model, new_forward=Qwen2PipelineForwards.qwen2_model_forward, policy=policy |
||||
) |
||||
return policy |
||||
|
||||
def get_held_layers(self) -> List[Module]: |
||||
"""Get pipeline layers for current stage.""" |
||||
held_layers = super().get_held_layers() |
||||
return held_layers |
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]: |
||||
"""No shared params in Qwen2 model""" |
||||
return [] |
||||
|
||||
|
||||
class Qwen2ForCausalLMPolicy(Qwen2Policy): |
||||
def module_policy(self): |
||||
from transformers import Qwen2ForCausalLM |
||||
|
||||
policy = super().module_policy() |
||||
|
||||
setattr(self.shard_config, "causal_lm", True) |
||||
|
||||
if self.shard_config.enable_tensor_parallelism: |
||||
# add a new item for casual lm |
||||
new_item = { |
||||
Qwen2ForCausalLM: ModulePolicyDescription( |
||||
sub_module_replacement=[ |
||||
SubModuleReplacementDescription(suffix="lm_head", target_module=Linear1D_Col) |
||||
], |
||||
method_replacement={"forward": get_lm_forward_with_dist_cross_entropy(self.shard_config)}, |
||||
) |
||||
} |
||||
policy.update(new_item) |
||||
|
||||
if self.pipeline_stage_manager: |
||||
# set None as default |
||||
self.set_pipeline_forward( |
||||
model_cls=Qwen2ForCausalLM, new_forward=Qwen2PipelineForwards.qwen2_for_causal_lm_forward, policy=policy |
||||
) |
||||
|
||||
return policy |
||||
|
||||
def get_held_layers(self) -> List[Module]: |
||||
"""Get pipeline layers for current stage.""" |
||||
stage_manager = self.pipeline_stage_manager |
||||
held_layers = super().get_held_layers() |
||||
if stage_manager.is_last_stage(ignore_chunk=True): |
||||
held_layers.append(self.model.lm_head) |
||||
return held_layers |
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]: |
||||
qwen2_model = self.model.model |
||||
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1: |
||||
if ( |
||||
id(qwen2_model.embed_tokens.weight) == id(self.model.lm_head.weight) |
||||
and self.pipeline_stage_manager.num_stages > 1 |
||||
): |
||||
# tie weights |
||||
return [ |
||||
{ |
||||
0: qwen2_model.embed_tokens.weight, |
||||
self.pipeline_stage_manager.num_stages - 1: self.model.lm_head.weight, |
||||
} |
||||
] |
||||
return [] |
||||
|
||||
|
||||
class Qwen2ForSequenceClassificationPolicy(Qwen2Policy): |
||||
def module_policy(self): |
||||
from transformers import Qwen2ForSequenceClassification |
||||
|
||||
policy = super().module_policy() |
||||
|
||||
if self.shard_config.enable_tensor_parallelism: |
||||
# add a new item for sequence classification |
||||
new_item = { |
||||
Qwen2ForSequenceClassification: ModulePolicyDescription( |
||||
sub_module_replacement=[ |
||||
SubModuleReplacementDescription( |
||||
suffix="score", target_module=Linear1D_Col, kwargs=dict(gather_output=True) |
||||
) |
||||
] |
||||
) |
||||
} |
||||
policy.update(new_item) |
||||
# to be confirmed |
||||
if self.pipeline_stage_manager: |
||||
# set None as default |
||||
self.set_pipeline_forward( |
||||
model_cls=Qwen2ForSequenceClassification, |
||||
new_forward=Qwen2PipelineForwards.qwen2_for_sequence_classification_forward, |
||||
policy=policy, |
||||
) |
||||
return policy |
||||
|
||||
def get_held_layers(self) -> List[Module]: |
||||
"""Get pipeline layers for current stage.""" |
||||
stage_manager = self.pipeline_stage_manager |
||||
held_layers = super().get_held_layers() |
||||
if stage_manager.is_last_stage(ignore_chunk=True): |
||||
held_layers.append(self.model.score) |
||||
return held_layers |
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]: |
||||
"""No shared params in Qwen2 for sequence classification model""" |
||||
return [] |
Loading…
Reference in new issue