mirror of https://github.com/hpcaitech/ColossalAI
[kernel] Support new KCache Layout - Context Attention Triton Kernel (#5658)
* add context attn triton kernel - new kcache layout * add benchmark triton * tiny revise * trivial - code style, commentpull/5674/head
parent
3c91e3f176
commit
5be590b99e
|
@ -185,6 +185,184 @@ def _fwd_context_paged_attention_kernel(
|
|||
return
|
||||
|
||||
|
||||
# Triton 2.1.0
|
||||
# TODO(yuanheng-zhao): This is a temporary dispatch to use the new layout for kcache
|
||||
# merge `_fwd_context_paged_attention_kernel_v2` with `_fwd_context_paged_attention_kernel` later
|
||||
# as the kcache layout has been supported in the whole triton flow.
|
||||
@triton.jit
|
||||
def _fwd_context_paged_attention_kernel_v2(
|
||||
Q,
|
||||
K,
|
||||
V,
|
||||
O,
|
||||
KCache, # [num_blocks, num_kv_heads, head_dim // x, block_size, x]
|
||||
VCache, # [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
BLOCK_TABLES, # [num_seqs, max_blocks_per_sequence]
|
||||
batch_size,
|
||||
stride_qt,
|
||||
stride_qh,
|
||||
stride_qd,
|
||||
stride_kt,
|
||||
stride_kh,
|
||||
stride_kd,
|
||||
stride_vt,
|
||||
stride_vh,
|
||||
stride_vd,
|
||||
stride_ot,
|
||||
stride_oh,
|
||||
stride_od,
|
||||
stride_cacheb, # v cache stride(0) - num_blocks
|
||||
stride_cacheh, # v cache stride(1) - num_kv_heads
|
||||
stride_cachebs, # v cache stride(2) - block_size
|
||||
stride_cached, # v cache stride(3) - head_dim
|
||||
stride_bts,
|
||||
stride_btb,
|
||||
context_lengths,
|
||||
sm_scale,
|
||||
KV_GROUPS: tl.constexpr,
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
KCACHE_X: tl.constexpr, # k stride on the second last dimension
|
||||
BLOCK_M: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
cur_seq_idx = tl.program_id(0)
|
||||
if cur_seq_idx >= batch_size:
|
||||
return
|
||||
cur_head_idx = tl.program_id(1)
|
||||
block_start_m = tl.program_id(2) # Br, max_input_len // Block_M
|
||||
cur_kv_head_idx = cur_head_idx // KV_GROUPS
|
||||
|
||||
# NOTE It requires BLOCK_M, BLOCK_N, and BLOCK_SIZE to be the same
|
||||
tl.static_assert(BLOCK_M == BLOCK_N)
|
||||
tl.static_assert(BLOCK_N == BLOCK_SIZE)
|
||||
|
||||
# get the current sequence length from provided context lengths tensor
|
||||
cur_seq_len = tl.load(context_lengths + cur_seq_idx)
|
||||
# NOTE when talking to fused QKV and a nopadding context attention,
|
||||
# we assume that the input Q/K/V is contiguous, and thus here `prev_seq_len_sum`
|
||||
# could be considered as the start index of the current sequence.
|
||||
# FIXME might want to explore better way to get the summation of prev seq lengths.
|
||||
# `tl.sum(tensor[:end])` is invalid as tensor slice is not supported in triton.
|
||||
prev_seq_len_sum = 0
|
||||
for i in range(0, cur_seq_idx):
|
||||
prev_seq_len_sum += tl.load(context_lengths + i)
|
||||
|
||||
offset_q = prev_seq_len_sum * stride_qt + cur_head_idx * stride_qh
|
||||
offset_kv = prev_seq_len_sum * stride_kt + cur_kv_head_idx * stride_kh
|
||||
Q_block_ptr = tl.make_block_ptr(
|
||||
base=Q + offset_q,
|
||||
shape=(cur_seq_len, HEAD_DIM),
|
||||
strides=(stride_qt, stride_qd),
|
||||
offsets=(block_start_m * BLOCK_M, 0),
|
||||
block_shape=(BLOCK_M, HEAD_DIM),
|
||||
order=(1, 0),
|
||||
)
|
||||
K_block_ptr = tl.make_block_ptr(
|
||||
base=K + offset_kv,
|
||||
shape=(HEAD_DIM, cur_seq_len),
|
||||
strides=(stride_kd, stride_kt),
|
||||
offsets=(0, 0),
|
||||
block_shape=(HEAD_DIM, BLOCK_N),
|
||||
order=(0, 1),
|
||||
)
|
||||
V_block_ptr = tl.make_block_ptr(
|
||||
base=V + offset_kv,
|
||||
shape=(cur_seq_len, HEAD_DIM),
|
||||
strides=(stride_vt, stride_vd),
|
||||
offsets=(0, 0),
|
||||
block_shape=(BLOCK_N, HEAD_DIM),
|
||||
order=(1, 0),
|
||||
)
|
||||
O_block_ptr = tl.make_block_ptr(
|
||||
base=O + offset_q,
|
||||
shape=(cur_seq_len, HEAD_DIM),
|
||||
strides=(stride_ot, stride_od),
|
||||
offsets=(block_start_m * BLOCK_M, 0),
|
||||
block_shape=(BLOCK_M, HEAD_DIM),
|
||||
order=(1, 0),
|
||||
)
|
||||
|
||||
# block table for the current sequence
|
||||
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
|
||||
# block indexes on block table (i.e. 0, 1, 2, ..., max_blocks_per_seq)
|
||||
# Consider `block_start_m` as the logical block idx in the current block table,
|
||||
# as we have BLOCK_M the same size as the block size.
|
||||
cur_block_table_idx = block_start_m
|
||||
cur_block_id = tl.load(block_table_ptr + cur_block_table_idx * stride_btb)
|
||||
offset_kvcache = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh
|
||||
|
||||
offsets_m = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
||||
offsets_n = tl.arange(0, BLOCK_N)
|
||||
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
|
||||
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
||||
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
|
||||
|
||||
if block_start_m * BLOCK_M >= cur_seq_len:
|
||||
return
|
||||
|
||||
Q_i = tl.load(Q_block_ptr, boundary_check=(1, 0))
|
||||
|
||||
for block_start_n in range(0, (block_start_m + 1) * BLOCK_M, BLOCK_N):
|
||||
block_start_n = tl.multiple_of(block_start_n, BLOCK_N)
|
||||
|
||||
k = tl.load(K_block_ptr, boundary_check=(0, 1))
|
||||
S_ij = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
||||
S_ij += tl.dot(Q_i, k)
|
||||
S_ij *= sm_scale
|
||||
S_ij += tl.where(offsets_m[:, None] >= (block_start_n + offsets_n[None, :]), 0, float("-inf"))
|
||||
|
||||
m_ij = tl.max(S_ij, 1) # rowmax(Sij)
|
||||
m_ij = tl.maximum(m_i, m_ij) # m_ij
|
||||
S_ij -= m_ij[:, None]
|
||||
p_ij_hat = tl.exp(S_ij)
|
||||
scale = tl.exp(m_i - m_ij)
|
||||
l_ij = scale * l_i + tl.sum(p_ij_hat, 1)
|
||||
acc = acc * scale[:, None]
|
||||
|
||||
v = tl.load(V_block_ptr, boundary_check=(1, 0))
|
||||
p_ij_hat = p_ij_hat.to(v.type.element_ty)
|
||||
|
||||
acc += tl.dot(p_ij_hat, v)
|
||||
l_i = l_ij
|
||||
m_i = m_ij
|
||||
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
||||
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
||||
|
||||
acc = acc / l_i[:, None]
|
||||
tl.store(O_block_ptr, acc.to(O.type.element_ty), boundary_check=(1, 0))
|
||||
|
||||
if cur_head_idx % KV_GROUPS == 0:
|
||||
# Copy k to corresponding cache block
|
||||
block_range = tl.arange(0, BLOCK_SIZE)
|
||||
X_range = tl.arange(0, KCACHE_X)
|
||||
# unroll the loop aggressively
|
||||
for split_x in tl.static_range(HEAD_DIM // KCACHE_X):
|
||||
offsets_dmodel_x_partion = tl.arange(split_x * KCACHE_X, (split_x + 1) * KCACHE_X)
|
||||
offsets_k = K + offset_kv + offsets_dmodel_x_partion[None, :] * stride_kd + offsets_m[:, None] * stride_kt
|
||||
k = tl.load(offsets_k, mask=offsets_m[:, None] < cur_seq_len, other=0.0)
|
||||
# HACK: KCache must be contiguous in order to apply the following offsets calculation
|
||||
offsets_kcache = (
|
||||
KCache
|
||||
+ offset_kvcache
|
||||
+ split_x * BLOCK_SIZE * KCACHE_X
|
||||
+ block_range[:, None] * KCACHE_X
|
||||
+ X_range[None, :]
|
||||
)
|
||||
tl.store(offsets_kcache, k, mask=block_range[:, None] < cur_seq_len - block_start_m * BLOCK_SIZE)
|
||||
# Copy v to corresponding cache block
|
||||
offsets_vd = tl.arange(0, HEAD_DIM) # offsets_dmodel
|
||||
offsets_vt = block_start_m * BLOCK_N + offsets_n
|
||||
offsets_v = V + offset_kv + offsets_vt[None, :] * stride_vt + offsets_vd[:, None] * stride_vd
|
||||
v = tl.load(offsets_v, mask=offsets_vt[None, :] < cur_seq_len, other=0.0)
|
||||
offsets_vcache = (
|
||||
VCache + offset_kvcache + block_range[None, :] * stride_cachebs + offsets_vd[:, None] * stride_cached
|
||||
)
|
||||
tl.store(offsets_vcache, v, mask=block_range[None, :] < cur_seq_len - block_start_m * BLOCK_SIZE)
|
||||
|
||||
return
|
||||
|
||||
|
||||
# Triton 2.1.0
|
||||
@triton.jit
|
||||
def _alibi_fwd_context_paged_attention_kernel(
|
||||
|
@ -375,8 +553,8 @@ def context_attention_unpadded(
|
|||
q: torch.Tensor, # [num_tokens, num_heads, head_dim]
|
||||
k: torch.Tensor, # [num_tokens, num_kv_heads, head_dim]
|
||||
v: torch.Tensor, # [num_tokens, num_kv_heads, head_dim]
|
||||
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_dim, block_size]
|
||||
v_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_dim, block_size]
|
||||
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
v_cache: torch.Tensor, # [num_blocks, num_kv_heads, block_size, head_dim]
|
||||
context_lengths: torch.Tensor, # [num_seqs]
|
||||
block_tables: torch.Tensor, # [num_seqs, max_blocks_per_sequence],
|
||||
block_size: int,
|
||||
|
@ -384,12 +562,24 @@ def context_attention_unpadded(
|
|||
alibi_slopes: torch.Tensor = None, # [num_heads]
|
||||
max_seq_len: int = None,
|
||||
sm_scale: int = None,
|
||||
# NOTE(yuanheng-zhao): the following flag is used to determine whether to use the new layout for kcache
|
||||
# [num_blocks, num_kv_heads, head_dim // x, block_size, x] - must be contiguous
|
||||
use_new_kcache_layout: bool = False,
|
||||
):
|
||||
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
||||
assert Lq == Lk == Lv
|
||||
assert Lk in {32, 64, 128, 256}
|
||||
assert q.shape[0] == k.shape[0] == v.shape[0]
|
||||
assert k_cache.shape == v_cache.shape
|
||||
k_cache_shape = k_cache.shape
|
||||
v_cache_shape = v_cache.shape
|
||||
if use_new_kcache_layout:
|
||||
assert (
|
||||
len(k_cache_shape) == 5
|
||||
and k_cache_shape[1] == v_cache_shape[1]
|
||||
and k_cache_shape[2] * k_cache_shape[4] == v_cache_shape[3]
|
||||
), f"Invalid KCache shape {k_cache_shape} and VCache shape {v_cache_shape}"
|
||||
else:
|
||||
assert k_cache_shape == v_cache_shape, f"Invalid KCache shape {k_cache_shape} and VCache shape {v_cache_shape}"
|
||||
assert context_lengths.shape[0] == block_tables.shape[0]
|
||||
|
||||
num_tokens, num_heads, head_dim = q.shape
|
||||
|
@ -413,6 +603,53 @@ def context_attention_unpadded(
|
|||
# To optimize, revise batching/scheduling to batch 2^n sequences in a batch (preferred)
|
||||
grid = (triton.next_power_of_2(num_seqs), num_heads, triton.cdiv(max_seq_len, BLOCK_M))
|
||||
|
||||
if use_new_kcache_layout:
|
||||
# TODO(yuanheng-zhao): Since the alibi kernel is pretty similar to the original one,
|
||||
# the code (alibi kernel) will be refactored later to avoid code duplication, when
|
||||
# the whole triton flow with new k cache layout has been supported and tested.
|
||||
assert (
|
||||
alibi_slopes is None
|
||||
), "Alibi Slopes will be supported with new kcache layout later when the whole triton flow is ready"
|
||||
x = k_cache_shape[4] # Intuition: 16 // dtype_size
|
||||
|
||||
_fwd_context_paged_attention_kernel_v2[grid](
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
output,
|
||||
k_cache,
|
||||
v_cache,
|
||||
block_tables,
|
||||
num_seqs,
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
k.stride(0),
|
||||
k.stride(1),
|
||||
k.stride(2),
|
||||
v.stride(0),
|
||||
v.stride(1),
|
||||
v.stride(2),
|
||||
output.stride(0),
|
||||
head_dim,
|
||||
1,
|
||||
v_cache.stride(0),
|
||||
v_cache.stride(1),
|
||||
v_cache.stride(2),
|
||||
v_cache.stride(3),
|
||||
block_tables.stride(0),
|
||||
block_tables.stride(1),
|
||||
context_lengths,
|
||||
sm_scale,
|
||||
KV_GROUPS=num_kv_group,
|
||||
BLOCK_SIZE=block_size,
|
||||
HEAD_DIM=Lk,
|
||||
KCACHE_X=x,
|
||||
BLOCK_M=BLOCK_M,
|
||||
BLOCK_N=BLOCK_N,
|
||||
)
|
||||
return output
|
||||
|
||||
if alibi_slopes is not None:
|
||||
_alibi_fwd_context_paged_attention_kernel[grid](
|
||||
q,
|
||||
|
|
|
@ -24,9 +24,9 @@ configs = [
|
|||
x_vals=[2**i for i in range(8, 13)],
|
||||
# x_vals=[x for x in range(256, 8192, 256)],
|
||||
line_arg="provider",
|
||||
line_vals=["torch", "triton"],
|
||||
line_names=["Torch", "Triton"],
|
||||
styles=[("red", "-"), ("blue", "-")],
|
||||
line_vals=["torch", "triton", "triton_new_klayout"],
|
||||
line_names=["Torch", "Triton", "Triton_new_klayout"],
|
||||
styles=[("red", "-"), ("blue", "-"), ("green", "-")],
|
||||
ylabel="ms",
|
||||
plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}",
|
||||
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
|
||||
|
@ -98,13 +98,33 @@ def bench_kernel(
|
|||
HEAD_DIM,
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
if provider == "triton":
|
||||
elif provider == "triton":
|
||||
k_cache_triton = torch.zeros_like(k_cache_ref)
|
||||
v_cache_triton = torch.zeros_like(v_cache_ref)
|
||||
fn = lambda: context_attention_unpadded(
|
||||
q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
elif provider == "triton_new_klayout":
|
||||
# NOTE New kcache layout (num_blocks, num_kv_heads, head_dim // x, block_size, x)
|
||||
# to be applied around the cuda and triton kernels.
|
||||
# Here we want to make sure it does not cause downgrade in performance.
|
||||
x = 16 // torch.tensor([], dtype=dtype).element_size()
|
||||
k_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, HEAD_DIM // x, block_size, x)
|
||||
k_cache_triton = torch.zeros(size=k_cache_shape, dtype=dtype, device=device)
|
||||
v_cache_triton = torch.zeros_like(v_cache_ref)
|
||||
fn = lambda: context_attention_unpadded(
|
||||
q_unpad,
|
||||
k_unpad,
|
||||
v_unpad,
|
||||
k_cache_triton,
|
||||
v_cache_triton,
|
||||
context_lengths,
|
||||
block_tables,
|
||||
block_size,
|
||||
use_new_kcache_layout=True,
|
||||
)
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
|
||||
|
||||
return ms, min_ms, max_ms
|
||||
|
||||
|
|
|
@ -5,7 +5,11 @@ from packaging import version
|
|||
from colossalai.inference.modeling.models.nopadding_baichuan import get_alibi_slopes
|
||||
from colossalai.kernel.triton import context_attention_unpadded
|
||||
from colossalai.utils import get_current_device
|
||||
from tests.test_infer.test_ops.triton.kernel_utils import generate_caches_and_block_tables_v2, torch_attn_ref
|
||||
from tests.test_infer.test_ops.triton.kernel_utils import (
|
||||
generate_caches_and_block_tables_v2,
|
||||
generate_caches_and_block_tables_v3,
|
||||
torch_attn_ref,
|
||||
)
|
||||
|
||||
try:
|
||||
import triton # noqa
|
||||
|
@ -59,7 +63,7 @@ def torch_attn_unpad(
|
|||
mask = torch.tril(torch.ones(1, 1, seq_len, seq_len), diagonal=0).to(device=q.device)
|
||||
mask[mask == 0.0] = float("-inf")
|
||||
|
||||
if slopes != None:
|
||||
if slopes is not None:
|
||||
alibi_mask = generate_alibi_mask(slopes, num_heads, seq_len, q.device)
|
||||
mask = mask + alibi_mask
|
||||
|
||||
|
@ -89,6 +93,7 @@ def torch_attn_unpad(
|
|||
@pytest.mark.parametrize("kv_group_num", [1, 2, 16])
|
||||
@pytest.mark.parametrize("same_context_len", [True, False])
|
||||
@pytest.mark.parametrize("use_alibi_slopes", [True, False])
|
||||
@pytest.mark.parametrize("use_new_kcache_layout", [True, False])
|
||||
def test_context_attention(
|
||||
bsz: int,
|
||||
block_size: int,
|
||||
|
@ -97,7 +102,15 @@ def test_context_attention(
|
|||
kv_group_num: int,
|
||||
same_context_len: bool,
|
||||
use_alibi_slopes: bool,
|
||||
use_new_kcache_layout: bool,
|
||||
):
|
||||
if use_new_kcache_layout and use_alibi_slopes:
|
||||
# TODO(yuanheng-zhao): Since the alibi kernel is pretty similar to the original one,
|
||||
# the code (alibi kernel) will be refactored later to avoid code duplication, when
|
||||
# the whole triton flow with new k cache layout has been supported and tested.
|
||||
# And tests for the alibi kernel using new kcache layout will be added then.
|
||||
return
|
||||
|
||||
torch.manual_seed(123)
|
||||
# It's necessary to clear cache here.
|
||||
torch.cuda.empty_cache()
|
||||
|
@ -124,9 +137,16 @@ def test_context_attention(
|
|||
qkv_unpad = torch.empty(size=qkv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
|
||||
q_unpad, k_unpad, v_unpad = torch.split(qkv_unpad, [num_attn_heads, num_kv_heads, num_kv_heads], dim=-2)
|
||||
q_unpad = q_unpad.contiguous()
|
||||
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
|
||||
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
|
||||
)
|
||||
|
||||
if use_new_kcache_layout:
|
||||
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v3(
|
||||
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
|
||||
)
|
||||
else:
|
||||
k_cache_ref, v_cache_ref, block_tables = generate_caches_and_block_tables_v2(
|
||||
k_unpad, v_unpad, context_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
|
||||
)
|
||||
|
||||
block_tables = block_tables.to(device=device)
|
||||
k_cache_triton = torch.zeros_like(k_cache_ref)
|
||||
v_cache_triton = torch.zeros_like(v_cache_ref)
|
||||
|
@ -143,6 +163,7 @@ def test_context_attention(
|
|||
block_tables,
|
||||
block_size,
|
||||
alibi_slopes=alibi_slopes,
|
||||
use_new_kcache_layout=use_new_kcache_layout,
|
||||
)
|
||||
|
||||
out_triton = out_triton.view(-1, num_heads, head_dim)
|
||||
|
@ -155,4 +176,4 @@ def test_context_attention(
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_context_attention(4, 32, 8, 16, 1, True, True)
|
||||
test_context_attention(4, 32, 8, 16, 1, True, True, True)
|
||||
|
|
Loading…
Reference in New Issue