[pipeline/rpc] update outstanding mechanism | optimize dispatching strategy (#1497)

* support p2p communication with any type of object | pass test

* reconstruct pipeline schedule with p2p_v2.py(support communication with List[Any]) | pass test

* [engin/schedule] use p2p_v2 to recontruct pipeline_schedule

* [pipeline/rpc] implement a demo for PP with cuda rpc framework

* [pipeline/rpc] support interleaving | fix checkpoint bug | change logic when dispatch data in work_list to ensure steady 1F1B

* [pipeline/rpc] implement distributed optimizer | test with assert_close

* [pipeline/rpc] implement distributed optimizer | test with assert_close

* [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy

* [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy

* [pipeline/rpc] update outstanding mechanism | optimize dispatching strategy
pull/1502/head
Kirigaya Kazuto 2022-08-26 14:04:23 +08:00 committed by GitHub
parent 0ed2f46131
commit 5a6fd71f90
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 174 additions and 135 deletions

View File

@ -68,7 +68,7 @@ class UniqueKey:
class WorkItem:
__slots__ = ('stage_id', 'phase', 'args', 'kwargs', 'output', 'refcount', 'microbatch_id', 'batch_id',
'num_microbatches')
'num_microbatches', 'forward_only')
stage_id: int
phase: Phase
@ -81,6 +81,7 @@ class WorkItem:
batch_id: int
num_microbatches: int
forward_only: bool
def __init__(self,
stage_id,
@ -91,6 +92,7 @@ class WorkItem:
microbatch_id,
batch_id,
num_microbatches,
forward_only,
refcount=0) -> None:
for attr_name in self.__slots__:
setattr(self, attr_name, locals()[attr_name])
@ -129,36 +131,39 @@ class Worker:
pp_rank: int,
actual_stage_num: int,
num_microbatches: int,
max_outstanding: int,
use_1F1B: bool,
device: str,
checkpoint: bool = False) -> None:
super().__init__()
self.pp_rank = pp_rank
self.actual_stage_num = actual_stage_num
self.num_microbatches = num_microbatches
self.max_outstanding = max_outstanding
self.outstanding = 0
self.checkpoint = checkpoint
self.device = device
self.outstanding_range = self._initialize_outstanding_range(pp_rank, actual_stage_num, use_1F1B)
self.future_devices = None if device is None or device == 'cpu' else [device]
# variable and const for context managment
self.outstanding = 0
self.forward_times = 0
self.backward_times = 0
self.reset_key = UniqueKey(0, Phase.FORWARD)
# rref of other workers
self.pp_rank_to_worker_rref: Dict[int, PyRRef] = None
# topology info
self.producer_stage_ids: List[int] = None
self.consumer_stage_ids: List[int] = None
# module
# module partitions
self.module_partition = module_partition.to(device)
self.debug_list = [None] * num_microbatches
# container to maintain loop
self.microbatch_id_to_backward_cache: Dict[int, BackwardCache] = dict()
self.work_list: Dict[UniqueKey, WorkItem] = dict()
self.output_list: Dict[UniqueKey, WorkItem] = dict()
# Why must a Lock instead of RLock ?
# Because RLock cannot be pickled
# lock for the list
self.work_list_condition_lock = threading.Condition(threading.Lock())
self.output_list_condition_lock = threading.Condition(threading.Lock())
@ -168,6 +173,15 @@ class Worker:
def _get_future_by_device(self):
return torch.futures.Future(devices=None if self.device in (None, 'cpu') else [self.device])
def _initialize_outstanding_range(self, pp_rank: int, actual_stage_num: int, use_1F1B: bool) -> Tuple[int]:
outstanding_range = None
if use_1F1B:
if pp_rank == actual_stage_num - 1:
outstanding_range = (0, 1)
else:
outstanding_range = (actual_stage_num, actual_stage_num)
return outstanding_range
def sync_global_worker_rrefs(self, pp_rank_to_worker_rref: Dict[int, PyRRef]) -> None:
assert self.pp_rank_to_worker_rref is None, f"in rank {self.pp_rank}, worker has sync global workers rrefs"
assert pp_rank_to_worker_rref is not None, "stage_to_workers must be a dict instead of None"
@ -197,8 +211,15 @@ class Worker:
def get_parameter_gradients(self) -> List[torch.Tensor]:
return [p.grad for p in self.module_partition.parameters()]
def reset_pp_context(self):
self.forward_times = 0
self.backward_times = 0
self.outstanding = 0
self.microbatch_id_to_backward_cache.clear()
self.output_list.clear()
# just for first pp_rank
def set_input(self, microbatch_id: int, microbatch: Tuple[Any]):
def set_input(self, microbatch_id: int, microbatch: Tuple[Any], forward_only: bool):
with self.work_list_condition_lock:
assert self.consumer_stage_ids is not None
consumer_num = len(self.consumer_stage_ids)
@ -207,11 +228,10 @@ class Worker:
args = [microbatch] if isinstance(microbatch, torch.Tensor) else microbatch
work_item = WorkItem(self.pp_rank, Phase.FORWARD, args, {}, output, microbatch_id, None,
self.num_microbatches, consumer_num)
self.num_microbatches, forward_only)
self.work_list[key] = work_item
color_debug(f'rank {self.pp_rank} receive data from dataloader', 'data dispatch', 'magenta')
self.work_list_condition_lock.notify_all()
# just for last pp_rank
@ -224,24 +244,22 @@ class Worker:
grad_wrt_loss = torch.tensor(1, device=self.device)
work_item = WorkItem(self.pp_rank, Phase.BACKWARD, grad_wrt_loss, {}, output, microbatch_id, None,
self.num_microbatches, producer_num)
self.num_microbatches, False)
color_debug(f'rank {self.pp_rank} propose backward', 'data dispatch', 'magenta')
self.work_list[key] = work_item
self.work_list_condition_lock.notify_all()
def subscribe_producer(self, microbatch_id: int):
def subscribe_producer(self, microbatch_id: int, forward_only: bool):
"""
You should call this function asynchronously
"""
assert self.producer_stage_ids is not None
producer_num = len(self.producer_stage_ids)
consumer_num = len(self.consumer_stage_ids)
assert producer_num > 0, "only stage that has producers can subscribe producers"
stage_id = self.pp_rank
subscribe_forward_futures: List[Future] = [None] * producer_num
output = self._get_future_by_device()
@ -259,9 +277,8 @@ class Worker:
producer_args = subscribe_forward_futures[i].wait()
args.extend(producer_args)
# TODO : not only args
work_item_from_producer = WorkItem(stage_id, Phase.FORWARD, args, {}, output, microbatch_id, None,
self.num_microbatches, consumer_num)
self.num_microbatches, forward_only)
color_debug(f'rank {self.pp_rank} get value {tensor_shape_list(args)} from fut', 'data dispatch', 'magenta')
# add work_item to work_list
@ -279,13 +296,10 @@ class Worker:
You should call this function asynchronously
"""
assert self.producer_stage_ids is not None
producer_num = len(self.producer_stage_ids)
consumer_num = len(self.consumer_stage_ids)
assert consumer_num > 0, "only stage that has consumers can subscribe comsumers"
# TODO : is this right?
stage_id = self.pp_rank
subscribe_backward_futures: List[Future] = [None] * consumer_num
output = self._get_future_by_device()
@ -305,7 +319,7 @@ class Worker:
# flatten args
work_item_from_consumer = WorkItem(stage_id, Phase.BACKWARD, args, {}, output, microbatch_id, None,
self.num_microbatches, producer_num)
self.num_microbatches, False)
color_debug(f'rank {self.pp_rank} get value {tensor_shape_list(args)} from fut', 'data dispatch', 'magenta')
@ -341,32 +355,57 @@ class Worker:
while len(self.work_list) == 0:
self.work_list_condition_lock.wait()
# execute backward first (if backward phase in work_list)
select_work_list_key = None
for key in self.work_list:
work_item = self.work_list[key]
if work_item.phase == Phase.FORWARD and \
self.max_outstanding is not None and \
self.outstanding >= self.max_outstanding:
continue
else:
if select_work_list_key is not None and \
select_work_list_key.phase == Phase.FORWARD and \
key.phase == Phase.BACKWARD:
continue
# each stage must do Key(microbatch_id=0, phase=FORWARD) first
# before doing the operation, reset the context first
if self.reset_key in self.work_list:
self.reset_pp_context()
if select_work_list_key is None:
select_work_list_key = key
else:
phase_pair = (select_work_list_key.phase, key.phase)
# choose forward first
if phase_pair == (Phase.BACKWARD, Phase.FORWARD):
select_work_list_key = key
elif phase_pair == (Phase.FORWARD, Phase.BACKWARD):
continue
# choose work_item which has a smaller microbactch_id first
elif key.microbatch_id < select_work_list_key.microbatch_id:
select_work_list_key = key
# execute backward first (if backward phase in work_list)
pp_rank = self.pp_rank
actual_stage_num = self.actual_stage_num
num_microbatches = self.num_microbatches
is_last_stage = pp_rank == actual_stage_num - 1
select_work_list_key: UniqueKey = None
if self.outstanding_range:
if self.outstanding <= self.outstanding_range[0]:
target_phase = Phase.FORWARD
target_microbatch_id = self.forward_times
elif self.outstanding >= self.outstanding_range[1]:
target_phase = Phase.BACKWARD
target_microbatch_id = self.backward_times
else:
raise ValueError("outstanding_range[1] - outstanding_range[0] must be in [0, 1]")
target_key = UniqueKey(target_microbatch_id, target_phase)
if target_key in self.work_list:
select_work_list_key = target_key
# change outstanding_range at:
# 1. forward times reach actual_stage_num, this is the end of continuous forward
# 2. forward times reach num_microbatches, this is the end of 1F1B mode
if not is_last_stage and \
select_work_list_key is not None and \
select_work_list_key.phase == Phase.FORWARD:
if select_work_list_key.microbatch_id == actual_stage_num - 1:
outstanding_min = actual_stage_num - pp_rank - 1
outstanding_max = actual_stage_num - pp_rank
self.outstanding_range = (outstanding_min, outstanding_max)
elif select_work_list_key.microbatch_id == num_microbatches - 1:
self.outstanding_range = (0, 0)
else:
if self.forward_times < num_microbatches:
target_phase = Phase.FORWARD
target_microbatch_id = self.forward_times
else:
target_phase = Phase.BACKWARD
target_microbatch_id = self.backward_times
target_key = UniqueKey(target_microbatch_id, target_phase)
if target_key in self.work_list:
select_work_list_key = target_key
return select_work_list_key
@ -375,15 +414,28 @@ class Worker:
args = work_item.args
kwargs = work_item.kwargs
microbatch_id = work_item.microbatch_id
forward_only = work_item.forward_only
consume_result = None
# if self.pp_rank == 0:
# print(f"I am rank_{self.pp_rank} microbatch_id : {microbatch_id}", work_item.phase, len(self.work_list))
# TODO : use process manager to acquire rank info later
is_first_stage = (self.pp_rank == 0)
is_last_stage = (self.pp_rank == self.actual_stage_num - 1)
# color_debug(f'rank_{self.pp_rank} enter consume', 'consume', 'blue')
# if self.pp_rank == 3:
# print(
# f'I am rank_{self.pp_rank} microbatch_id : {microbatch_id} {phase} {self._get_store_len()} | {self.outstanding} {self.outstanding_range}'
# )
if phase == Phase.FORWARD:
self.outstanding += 1
# remind its consumer to get data before forward
if not is_last_stage:
for stage_id in self.consumer_stage_ids:
consumer_worker_rref = self.pp_rank_to_worker_rref[stage_id]
consumer_worker_rref.remote().subscribe_producer(microbatch_id, forward_only)
self.forward_times += 1
if not forward_only:
self.outstanding += 1
# TODO : more elegant ?
for i in range(len(args)):
@ -391,35 +443,46 @@ class Worker:
if isinstance(arg_obj, torch.Tensor) and not arg_obj.requires_grad:
args[i] = arg_obj.requires_grad_()
# TODO : use process manager to acquire rank info later
is_last_stage = (self.pp_rank == self.actual_stage_num - 1)
# last stage doesn't need to do checkpoint, for it will do backward instantly
if self.checkpoint and not is_last_stage:
if forward_only:
with torch.no_grad():
consume_result = self.module_partition(*args, **kwargs)
stage_outputs = None
stage_inputs = None
use_checkpoint = None
elif self.checkpoint and not is_last_stage:
with torch.no_grad():
consume_result = self.module_partition(*args, **kwargs)
stage_outputs = None
stage_inputs = args
self.microbatch_id_to_backward_cache[microbatch_id] = BackwardCache(stage_inputs,
stage_outputs,
checkpoint=True)
use_checkpoint = True
else:
consume_result = self.module_partition(*args, **kwargs)
stage_outputs = consume_result
stage_inputs = args
use_checkpoint = False
if not forward_only:
self.microbatch_id_to_backward_cache[microbatch_id] = BackwardCache(stage_inputs,
stage_outputs,
checkpoint=False)
checkpoint=use_checkpoint)
consume_result = [consume_result] if isinstance(consume_result, torch.Tensor) else consume_result
# if it is the last stage, trigger backward automatic
if is_last_stage:
self._begin_backward(microbatch_id)
# if not forward_only, do the backward
if not forward_only:
if is_last_stage: # if it is the last stage, trigger backward automatic
self._begin_backward(microbatch_id)
elif phase == Phase.BACKWARD:
# remind its producer to get data before backward
if not is_first_stage:
for stage_id in self.producer_stage_ids:
producer_worker_rref = self.pp_rank_to_worker_rref[stage_id]
producer_worker_rref.remote().subscribe_consumer(microbatch_id)
self.backward_times += 1
self.outstanding -= 1
assert microbatch_id in self.microbatch_id_to_backward_cache, f"microbatch_id {microbatch_id} not in backward cache"
backward_cache = self.microbatch_id_to_backward_cache.pop(microbatch_id)
@ -445,6 +508,9 @@ class Worker:
return consume_result
def _get_store_len(self):
return f'work_list:{len(self.work_list)} output_list:{len(self.output_list)} backward_cache:{len(self.microbatch_id_to_backward_cache)}'
# do the main loop to consume ready_list
def _work_loop(self):
# for init
@ -461,7 +527,7 @@ class Worker:
work_item = self.work_list.pop(work_item_key)
color_debug(
f'rank {self.pp_rank} get a key : {work_item_key} work_item args: {tensor_shape_list(work_item.args)}',
f'rank {self.pp_rank} get a key : {work_item_key} work_item args: {tensor_shape_list(work_item.args)} {self._get_store_len()}',
'work loop', 'green')
with self.output_list_condition_lock:
@ -472,7 +538,7 @@ class Worker:
consume_result = self._consume_work_item_by_phase(work_item)
color_debug(
f'rank_{self.pp_rank} [{work_item.phase}] finish consuming, result is {tensor_shape_list(consume_result)}',
f'rank_{self.pp_rank} [{work_item.phase}] finish consuming, result is {tensor_shape_list(consume_result)} {self._get_store_len()}',
'work loop', 'green')
work_item.output.set_result(consume_result)
@ -489,9 +555,6 @@ class Worker:
self.optimizer.zero_grad()
# TODO
# 1. chunk
# 2. checkpoint
class PipelineEngineBase(ABC, nn.Module):
def __init__(self,
@ -499,19 +562,18 @@ class PipelineEngineBase(ABC, nn.Module):
stage_num,
num_microbatches,
device: str,
max_outstanding=None,
use_1F1B=False,
chunk: int = 1,
use_interleave: bool = False,
checkpoint: bool = False) -> None:
super().__init__()
self.module_partitions: List[nn.Module] = module_partitions
self.chunk = chunk
self.num_microbatches = num_microbatches
self.device = device
self.max_outstanding = max_outstanding
self.use_1F1B = use_1F1B
self.stage_num = stage_num
self.checkpoint = checkpoint
self.use_interleave = use_interleave
self.use_interleave = chunk > 1
self.pp_rank_to_worker_rref: Dict[int, PyRRef] = dict()
@ -547,7 +609,7 @@ class PipelineEngineBase(ABC, nn.Module):
def _init_worker(self):
actual_stage_num = self._get_actual_stage_num()
max_outstanding = self.max_outstanding
use_1F1B = self.use_1F1B
checkpoint = self.checkpoint
num_microbatches = self.num_microbatches
device = self.device
@ -560,8 +622,7 @@ class PipelineEngineBase(ABC, nn.Module):
self.pp_rank_to_worker_rref[pp_rank] = rpc.remote(rpc_worker_id,
Worker,
args=(module_partition, pp_rank, actual_stage_num,
num_microbatches, max_outstanding, device,
checkpoint))
num_microbatches, use_1F1B, device, checkpoint))
# let each worker know global worker rref (include itself)
for pp_rank in range(actual_stage_num):
@ -585,46 +646,55 @@ class PipelineEngineBase(ABC, nn.Module):
grads[stage_id].append(grad)
return grads
def forward_backward(self, batch: torch.Tensor):
first_stage_worker = self.pp_rank_to_worker_rref[0]
microbatch_size = len(batch) // self.num_microbatches
def forward_backward(self, batch: torch.Tensor, forward_only: bool = False):
num_microbatches = self.num_microbatches
microbatch_size = len(batch) // num_microbatches
actual_stage_num = self._get_actual_stage_num()
microbatch_iter = range(self.num_microbatches)
first_stage_worker = self.pp_rank_to_worker_rref[0]
last_worker_rref = self.pp_rank_to_worker_rref[actual_stage_num - 1]
microbatch_iter = range(num_microbatches)
if use_progress:
microbatch_iter = tqdm(microbatch_iter)
ret_future: List[Future] = [None] * num_microbatches
from time import sleep
for microbatch_id in microbatch_iter:
microbatch = batch[microbatch_size * microbatch_id:microbatch_size * (microbatch_id + 1)]
# forward subscribe asynchronously
for pp_rank in range(1, actual_stage_num, 1):
worker_rref = self.pp_rank_to_worker_rref[pp_rank]
worker_rref.rpc_async().subscribe_producer(microbatch_id)
# backward subscribe asynchronously
for pp_rank in range(actual_stage_num - 2, -1, -1):
worker_rref = self.pp_rank_to_worker_rref[pp_rank]
worker_rref.rpc_async().subscribe_consumer(microbatch_id)
# control data input speed
# to prevent exceed of wait limitations
if microbatch_id >= actual_stage_num:
if forward_only or not self.use_1F1B:
ret_future[microbatch_id - actual_stage_num].wait()
else:
key = UniqueKey(microbatch_id - actual_stage_num, Phase.BACKWARD)
first_stage_worker.rpc_sync().get_output_by_key(key)
# run one microbatch
first_stage_worker.rpc_sync().set_input(microbatch_id, microbatch)
first_stage_worker.rpc_sync().set_input(microbatch_id, microbatch, forward_only)
key = UniqueKey(microbatch_id, Phase.FORWARD)
ret_future[microbatch_id] = last_worker_rref.rpc_async().get_output_by_key(key)
# wait forward
# TODO : all the node to output
forward_result = None
last_worker_rref = self.pp_rank_to_worker_rref[actual_stage_num - 1]
for microbatch_id in range(self.num_microbatches):
key = UniqueKey(microbatch_id, Phase.FORWARD)
ret = last_worker_rref.rpc_sync().get_output_by_key(key)
ret = ret_future[microbatch_id].wait()
if forward_result is None:
forward_result = [[]] * len(ret)
for i in range(len(forward_result)):
forward_result[i].append(ret[i])
# wait for last backward in rank0
key = UniqueKey(self.num_microbatches - 1, Phase.BACKWARD)
first_stage_worker.rpc_sync().get_output_by_key(key)
if not forward_only:
key = UniqueKey(self.num_microbatches - 1, Phase.BACKWARD)
first_stage_worker.rpc_sync().get_output_by_key(key)
return forward_result
def initialize_optimizer(self, optimizer_class: type, **kwargs):
@ -654,11 +724,9 @@ class FillDrainPipelineEngine(PipelineEngineBase):
num_microbatches: int,
device: str,
chunk: int = 1,
use_interleave: bool = False,
checkpoint: bool = False) -> None:
max_outstanding = None
super().__init__(module_partitions, stage_num, num_microbatches, device, max_outstanding, chunk, use_interleave,
checkpoint)
use_1F1B = False
super().__init__(module_partitions, stage_num, num_microbatches, device, use_1F1B, chunk, checkpoint)
class OneFOneBPipelineEngine(PipelineEngineBase):
@ -668,11 +736,7 @@ class OneFOneBPipelineEngine(PipelineEngineBase):
stage_num: int,
num_microbatches: int,
device: str,
max_outstanding=None,
chunk: int = 1,
use_interleave: bool = False,
checkpoint: bool = False) -> None:
if max_outstanding is None:
max_outstanding = len(module_partitions)
super().__init__(module_partitions, stage_num, num_microbatches, device, max_outstanding, chunk, use_interleave,
checkpoint)
use_1F1B = True
super().__init__(module_partitions, stage_num, num_microbatches, device, use_1F1B, chunk, checkpoint)

View File

@ -5,13 +5,9 @@ import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from torch import autograd
from torch.optim import SGD, Adam, RMSprop, Optimizer
from colorama import Back, Style
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.testing import assert_close
def color_debug(text, prefix=' ', color='blue'):
color = color.upper()
@ -43,13 +39,13 @@ class RpcTestModel(nn.Module):
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
parser.add_argument('--use_interleave', action='store_true')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'RMSprop'], default='SGD')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=str, default=128)

View File

@ -1,13 +1,7 @@
import os
import argparse
import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from torch import autograd
from torch.optim import SGD, Adam, RMSprop, Optimizer
from colorama import Back, Style
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.testing import assert_close
@ -21,7 +15,6 @@ def run_master(args):
stage_num = args.world_size
chunk = args.chunk
actual_stage_num = stage_num * chunk
use_interleave = args.use_interleave
use_checkpoint = args.use_checkpoint
num_microbatches = args.num_microbatches
optimizer_class = globals()[args.optimizer]
@ -45,7 +38,6 @@ def run_master(args):
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
use_interleave=use_interleave,
checkpoint=use_checkpoint)
engine.initialize_optimizer(optimizer_class, lr=lr)

View File

@ -1,10 +1,5 @@
import os
import argparse
import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
@ -13,12 +8,12 @@ from rpc_test_utils import rpc_run, parse_args, RpcTestModel
def run_master(args):
torch.manual_seed(100)
epoch = args.epoch
device = args.device
stage_num = args.world_size
chunk = args.chunk
num_microbatches = args.num_microbatches
actual_stage_num = stage_num * chunk
use_interleave = args.use_interleave
use_checkpoint = args.use_checkpoint
sample_num = 1024
@ -38,10 +33,10 @@ def run_master(args):
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
use_interleave=use_interleave,
checkpoint=use_checkpoint)
_ = engine.forward_backward(input_sample)
for _ in range(epoch):
_ = engine.forward_backward(input_sample, forward_only=False)
if __name__ == "__main__":

View File

@ -1,12 +1,6 @@
import os
import argparse
import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from torch import autograd
from colorama import Back, Style
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
from colossalai.testing import assert_close
@ -20,7 +14,6 @@ def run_master(args):
stage_num = args.world_size
chunk = args.chunk
actual_stage_num = stage_num * chunk
use_interleave = args.use_interleave
use_checkpoint = args.use_checkpoint
num_microbatches = args.num_microbatches
@ -41,7 +34,6 @@ def run_master(args):
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
use_interleave=use_interleave,
checkpoint=use_checkpoint)
forward_result = engine.forward_backward(input_sample)