mirror of https://github.com/hpcaitech/ColossalAI
[NFC] polish colossalai/nn/layer/parallel_2p5d/layers.py code style (#972)
parent
632e94abde
commit
598cde4a0f
|
@ -189,7 +189,7 @@ class Linear2p5D(ParallelLayer):
|
|||
def forward(self, x: Tensor) -> Tensor:
|
||||
# input: [m/dq, n/q, k/q]
|
||||
# output: [m/dq, n/q, h/q]
|
||||
out_shape = x.shape[:-1] + (self.hidden_size_per_partition, )
|
||||
out_shape = x.shape[:-1] + (self.hidden_size_per_partition,)
|
||||
|
||||
output = Matmul_AB_2p5D.apply(
|
||||
x,
|
||||
|
@ -254,7 +254,7 @@ class LayerNorm2p5D(ParallelLayer):
|
|||
self.tesseract_dim, _ = get_tesseract_dim_dep_from_env()
|
||||
|
||||
# partitioning dimension
|
||||
self.partitioned_partition = divide(normalized_shape, self.tesseract_dim) # *
|
||||
self.partitioned_partition = divide(normalized_shape, self.tesseract_dim) # *
|
||||
|
||||
# create parameters
|
||||
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
||||
|
@ -357,16 +357,16 @@ class LayerNorm2p5D(ParallelLayer):
|
|||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
with torch.no_grad():
|
||||
E_x = torch.sum(x, dim=-1, keepdim=True) # [b/q, s, 1]
|
||||
E_x = torch.sum(x, dim=-1, keepdim=True) # [b/q, s, 1]
|
||||
torch.distributed.all_reduce(E_x, group=gpc.get_group(ParallelMode.PARALLEL_2P5D_ROW))
|
||||
E_x /= self.normalized_shape
|
||||
|
||||
# Var_x in the block below is the sum of input^2
|
||||
Var_x = torch.sum(x * x, dim=-1, keepdim=True) # [b/q, s, 1]
|
||||
Var_x = torch.sum(x * x, dim=-1, keepdim=True) # [b/q, s, 1]
|
||||
torch.distributed.all_reduce(Var_x, group=gpc.get_group(ParallelMode.PARALLEL_2P5D_ROW))
|
||||
Var_x /= self.normalized_shape
|
||||
|
||||
Var_x = Var_x - E_x * E_x # variance of x [b/q, s, 1]
|
||||
Var_x = Var_x - E_x * E_x # variance of x [b/q, s, 1]
|
||||
# this time 1/sqrt(Var_x + epsilon)
|
||||
Var_x = 1.0 / torch.sqrt(Var_x + self.variance_epsilon)
|
||||
|
||||
|
@ -589,7 +589,7 @@ class PatchEmbedding2p5D(ParallelLayer):
|
|||
|
||||
output = F.conv2d(input_, weight, bias, stride=self.patch_size)
|
||||
if self.flatten:
|
||||
output = output.flatten(2).transpose(1, 2) # BCHW -> BNC
|
||||
output = output.flatten(2).transpose(1, 2) # BCHW -> BNC
|
||||
|
||||
cls_token = all_gather_tensor_2p5d(self.cls_token, -1, ParallelMode.PARALLEL_2P5D_COL)
|
||||
pos_embed = all_gather_tensor_2p5d(self.pos_embed, -1, ParallelMode.PARALLEL_2P5D_COL)
|
||||
|
@ -1038,7 +1038,7 @@ class Classifier2p5D(ParallelLayer):
|
|||
destination.update(local_state)
|
||||
|
||||
def forward(self, input_: Tensor) -> Tensor:
|
||||
out_shape = input_.shape[:-1] + (self.num_classes, )
|
||||
out_shape = input_.shape[:-1] + (self.num_classes,)
|
||||
|
||||
return classifier_2p5d(input_, self.weight, self.bias, self.tesseract_dim, out_shape, self.row_rank,
|
||||
self.col_rank, ParallelMode.PARALLEL_2P5D_ROW, ParallelMode.PARALLEL_2P5D_COL,
|
||||
|
@ -1172,7 +1172,7 @@ class VocabParallelClassifier2p5D(ParallelLayer):
|
|||
def forward(self, x: Tensor) -> Tensor:
|
||||
# input: [m/dq, n/q, k/q]
|
||||
# output: [m/dq, n/q, h/q]
|
||||
out_shape = x.shape[:-1] + (self.hidden_size_per_partition, )
|
||||
out_shape = x.shape[:-1] + (self.hidden_size_per_partition,)
|
||||
|
||||
output = Matmul_ABT_2p5D.apply(
|
||||
x,
|
||||
|
|
Loading…
Reference in New Issue