mirror of https://github.com/hpcaitech/ColossalAI
[Inference] Add readme (roadmap) and fulfill request handler (#5147)
* request handler * add readme --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com>pull/5258/head
parent
4cf4682e70
commit
56e75eeb06
|
@ -0,0 +1,7 @@
|
|||
"""
|
||||
Our config consists of three parts:
|
||||
1. model_config: The configuration for the model, including `model name`, 'model path' and self-defined layer.
|
||||
2. parallel_config: The configuration for parallelize model, including `tp_size`,'pp_size', `world size`, `local rank`, `master port`, `master ip`.
|
||||
3. cache_config: Configuration for initialize and manage kv cache, including `block size`, `block num`
|
||||
For the convenience of users, we provide a unified config api for that wrapped all the configs. One can easily construct a colossal_config by setting the needed configs.
|
||||
"""
|
|
@ -1,10 +1,48 @@
|
|||
from typing import List
|
||||
|
||||
|
||||
class RequestHandler:
|
||||
"""
|
||||
RequestHandler is the core for handling existing requests and updating current batch.
|
||||
During generation process, we call schedule function each iteration to update current batch.
|
||||
|
||||
Args:
|
||||
cache_config: Configuration for initialize and manage kv cache.
|
||||
"""
|
||||
|
||||
def __init__(self, cache_config) -> None:
|
||||
self.cache_config = cache_config
|
||||
self._init_cache()
|
||||
self.waiting_list: List["Reqseq"] = []
|
||||
self.running_list: List["Reqseq"] = []
|
||||
|
||||
def _init_cache(self):
|
||||
pass
|
||||
"""
|
||||
Initialize the cache manager with cache config.
|
||||
"""
|
||||
|
||||
def schedule(self, request):
|
||||
pass
|
||||
def schedule(self):
|
||||
"""
|
||||
The main logic of request handler.
|
||||
"""
|
||||
|
||||
def add_sequence(self, reqseq: "Reqseq"):
|
||||
"""
|
||||
Add the request to waiting list.
|
||||
"""
|
||||
self.waiting_list.append(reqseq)
|
||||
|
||||
def abort_sequence(self, seq_id: str):
|
||||
"""
|
||||
Abort the request. #TODO :implement this
|
||||
"""
|
||||
self._find_sequence(seq_id)
|
||||
return
|
||||
|
||||
def _find_sequence(self, seq_id: str) -> "Reqseq":
|
||||
"""
|
||||
Find the request by seq_id.
|
||||
"""
|
||||
|
||||
def check_unfinished_seqs(self) -> bool:
|
||||
return self.waiting_list or self.running_list
|
||||
|
|
|
@ -0,0 +1,19 @@
|
|||
# Colossal-Infer
|
||||
## Introduction
|
||||
Colossal-Infer is a library for inference of LLMs and MLMs. It is built on top of Colossal AI.
|
||||
|
||||
## Structures
|
||||
### Overview
|
||||
https://n4fyd3ptax.feishu.cn/docx/MhlmdHsGkoeoslx9fqucPO17n9b?openbrd=1&doc_app_id=501&blockId=WCGBdWI9hobOEsxkW5uc8HM6n3b&blockType=whiteboard&blockToken=Cca3wKWk7hPnJxbkCX6cMxPQnqd#WCGBdWI9hobOEsxkW5uc8HM6n3b
|
||||
|
||||
## Roadmap
|
||||
- [] design of structures
|
||||
- [] Core components
|
||||
- [] engine
|
||||
- [] request handler
|
||||
- [] kv cache manager
|
||||
- [] modeling
|
||||
- [] custom layers
|
||||
- [] online server
|
||||
- [] supported models
|
||||
- [] llama2
|
Loading…
Reference in New Issue