mirror of https://github.com/hpcaitech/ColossalAI
update min memory stratege, reduce mem usage by 30%
parent
9c5e028a62
commit
55cb713f36
|
@ -1433,7 +1433,11 @@ class ChunkSelector(object):
|
|||
):
|
||||
if self.stratge == "min_memory":
|
||||
best_region = self._select_min_memory_chunk_region(
|
||||
possible_chunk_regions, chunk_infos
|
||||
possible_chunk_regions,
|
||||
chunk_infos,
|
||||
peak_node,
|
||||
max_chunk_region,
|
||||
mem_peak,
|
||||
)
|
||||
elif self.stratge == "fit_memory":
|
||||
best_region = self._select_fit_memory_chunk_region(
|
||||
|
@ -1561,19 +1565,52 @@ class ChunkSelector(object):
|
|||
count += 1
|
||||
return count
|
||||
|
||||
def _select_min_memory_chunk_region(self, possible_chunk_regions, chunk_infos):
|
||||
max_region_range = 0
|
||||
best_region = None
|
||||
while len(possible_chunk_regions) > 0:
|
||||
for i in possible_chunk_regions:
|
||||
if i["region"][1] - i["region"][0] > max_region_range:
|
||||
best_region = i
|
||||
max_region_range = i["region"][1] - i["region"][0]
|
||||
if self._is_legal_region(best_region, chunk_infos):
|
||||
break
|
||||
possible_chunk_regions.remove(i)
|
||||
max_region_range = 0
|
||||
best_region = None
|
||||
def _select_min_memory_chunk_region(
|
||||
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||
):
|
||||
# remove illegal regions
|
||||
illegal_regions = []
|
||||
for i in possible_chunk_regions:
|
||||
if not self._is_legal_region(i, chunk_infos):
|
||||
illegal_regions.append(i)
|
||||
for i in illegal_regions:
|
||||
if i in possible_chunk_regions:
|
||||
possible_chunk_regions.remove(i)
|
||||
|
||||
if len(possible_chunk_regions) == 0:
|
||||
return None
|
||||
|
||||
# get mem for chunk region
|
||||
regions_dict = []
|
||||
for region in possible_chunk_regions:
|
||||
cur_region = region.copy()
|
||||
cur_node_list, cur_region = self.index_tracer.tmp_reorder(
|
||||
self.index_tracer.node_list, cur_region
|
||||
)
|
||||
cur_chunk_infos = chunk_infos + [cur_region]
|
||||
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
||||
cur_node_list, cur_chunk_infos
|
||||
)[0]
|
||||
cur_chunk_region_peak = cur_mem_peak[
|
||||
max_chunk_region[0] : max_chunk_region[1] + 1
|
||||
]
|
||||
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
||||
regions_dict.append(
|
||||
{
|
||||
"chunk_info": region,
|
||||
"chunk_max_mem": cur_chunk_region_max_peak,
|
||||
"chunk_len": self._get_compute_node_num(
|
||||
region["region"][0], region["region"][1]
|
||||
),
|
||||
"reorder_chunk_info": cur_region,
|
||||
"reorder_node_list": cur_node_list,
|
||||
}
|
||||
)
|
||||
|
||||
# select the min mem
|
||||
chunk_max_mem = [i["chunk_max_mem"] for i in regions_dict]
|
||||
best_region_idx = chunk_max_mem.index(min(chunk_max_mem))
|
||||
best_region = regions_dict[best_region_idx]["chunk_info"]
|
||||
if best_region is not None:
|
||||
best_region["chunk_size"] = 1
|
||||
return best_region
|
||||
|
|
Loading…
Reference in New Issue