mirror of https://github.com/hpcaitech/ColossalAI
[polish] polish ColoTensor and its submodules (#2537)
parent
51d4d6e718
commit
552183bb74
|
@ -71,7 +71,7 @@ class ColoParameter(ColoTensor, torch.nn.Parameter):
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return f'ColoParameter: {ColoTensor.__repr__(self)}'
|
return super(ColoParameter, self).__repr__()
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def __torch_function__(cls, func, types, args=..., kwargs=None):
|
def __torch_function__(cls, func, types, args=..., kwargs=None):
|
||||||
|
|
|
@ -189,7 +189,12 @@ class ColoTensor(torch.Tensor):
|
||||||
return _convert_output(ret, colo_spec)
|
return _convert_output(ret, colo_spec)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return f'ColoTensor:\n{super().__repr__()}\n{self.dist_spec}\n{self.process_group}\n{self.compute_spec}'
|
output_list = [super(ColoTensor, self).__repr__()]
|
||||||
|
output_list.append(str(self.process_group))
|
||||||
|
output_list.append(str(self.dist_spec))
|
||||||
|
if self.compute_spec is not None:
|
||||||
|
output_list.append(str(self.compute_spec))
|
||||||
|
return "\n".join(output_list)
|
||||||
|
|
||||||
def _redistribute(self, dist_spec: _DistSpec) -> None:
|
def _redistribute(self, dist_spec: _DistSpec) -> None:
|
||||||
"""_redistribute
|
"""_redistribute
|
||||||
|
|
|
@ -23,7 +23,7 @@ class ComputeSpec(object):
|
||||||
self.output_replicate = True
|
self.output_replicate = True
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return f'Compute pattern: {self.compute_pattern}'
|
return f'ComputeSpec(pattern={self.compute_pattern}, replicate_output={self.output_replicate})'
|
||||||
|
|
||||||
def set_output_replicate(self, flag: bool = True):
|
def set_output_replicate(self, flag: bool = True):
|
||||||
self.output_replicate = flag
|
self.output_replicate = flag
|
||||||
|
|
|
@ -39,11 +39,12 @@ class _DistSpec:
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
def __repr__(self) -> str:
|
||||||
res_list = ["DistSpec:"]
|
attr_list = []
|
||||||
for attr in dir(self):
|
for attr in dir(self):
|
||||||
if not attr.startswith('__'):
|
if not attr.startswith('__'):
|
||||||
res_list.append(f'\n\t{attr}: {str(getattr(self, attr))}')
|
attr_list.append(f'{attr}={str(getattr(self, attr))}')
|
||||||
return ''.join(res_list)
|
attr_str = ", ".join(attr_list)
|
||||||
|
return "DistSpec(" + attr_str + ")"
|
||||||
|
|
||||||
|
|
||||||
def ReplicaSpec() -> _DistSpec:
|
def ReplicaSpec() -> _DistSpec:
|
||||||
|
|
|
@ -1,29 +1,36 @@
|
||||||
import torch
|
|
||||||
from typing import List, Optional
|
from typing import List, Optional
|
||||||
from colossalai.logging import get_dist_logger
|
|
||||||
|
import torch
|
||||||
|
|
||||||
from colossalai.context.singleton_meta import SingletonMeta
|
from colossalai.context.singleton_meta import SingletonMeta
|
||||||
|
from colossalai.logging import get_dist_logger
|
||||||
|
|
||||||
|
|
||||||
class PyTorchProcessGroupDict(metaclass=SingletonMeta):
|
class PyTorchProcessGroupDict(metaclass=SingletonMeta):
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
# distributed settings
|
# distributed settings
|
||||||
|
# use this dict to record all Pytorch ProcessGroups
|
||||||
self.dict = {}
|
self.dict = {}
|
||||||
|
# set a distributed logger
|
||||||
|
self.logger = get_dist_logger('ProcessGroup')
|
||||||
|
|
||||||
|
def log_pg_init(self, rank_list: List[int], backend: str):
|
||||||
|
str_list = ["Pytorch ProcessGroup Init:"]
|
||||||
|
str_list.append(f"backend: {backend}")
|
||||||
|
str_list.append(f"ranks: {rank_list}")
|
||||||
|
self.logger.info("\n\t".join(str_list), ranks=[0])
|
||||||
|
|
||||||
def get(self, rank_list: List[int], backend: str = 'nccl'):
|
def get(self, rank_list: List[int], backend: str = 'nccl'):
|
||||||
"""Reuse Pytorch ProcessGroup when such a group is initialized
|
"""Reuse Pytorch ProcessGroup when such a group is initialized
|
||||||
"""
|
"""
|
||||||
rank_tuple = tuple(rank_list)
|
|
||||||
# we need to convert the passed list to a tuple
|
# we need to convert the passed list to a tuple
|
||||||
# since List is unhashable
|
# since List is unhashable
|
||||||
pg_key = (backend, rank_tuple)
|
processgroup_key = (backend, tuple(rank_list))
|
||||||
|
if processgroup_key not in self.dict:
|
||||||
if pg_key not in self.dict:
|
self.log_pg_init(rank_list=rank_list, backend=backend)
|
||||||
|
self.dict[processgroup_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
|
||||||
self.logger = get_dist_logger('ProcessGroup')
|
return self.dict[processgroup_key]
|
||||||
self.logger.info(f'NCCL initialize ProcessGroup on {rank_list}', ranks=[0])
|
|
||||||
self.dict[pg_key] = torch.distributed.new_group(ranks=rank_list, backend=backend)
|
|
||||||
return self.dict[pg_key]
|
|
||||||
|
|
||||||
|
|
||||||
PYTORCHPGDICT_ = PyTorchProcessGroupDict()
|
PYTORCHPGDICT_ = PyTorchProcessGroupDict()
|
||||||
|
@ -54,10 +61,10 @@ class ProcessGroup:
|
||||||
return
|
return
|
||||||
|
|
||||||
assert torch.distributed.is_initialized(), f"ProcessGroup must be used after distributed initialized"
|
assert torch.distributed.is_initialized(), f"ProcessGroup must be used after distributed initialized"
|
||||||
if rank is None:
|
|
||||||
self._rank = torch.distributed.get_rank()
|
self._rank = torch.distributed.get_rank()
|
||||||
else:
|
if rank is not None:
|
||||||
self._rank = rank
|
assert self._rank == rank # make sure that the global rank is correct
|
||||||
|
|
||||||
if ranks is None:
|
if ranks is None:
|
||||||
self._rank_list = list(range(torch.distributed.get_world_size()))
|
self._rank_list = list(range(torch.distributed.get_world_size()))
|
||||||
|
@ -132,8 +139,9 @@ class ProcessGroup:
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
if self.is_init:
|
if self.is_init:
|
||||||
return "ProcessGroup:\n\tRank: {}, World size: {}, DP degree: {}, TP degree: {}\n\tRanks in group: {}".\
|
ranks_str = f"ProcessGroup(ranks={self._rank_list},\n"
|
||||||
format(self._rank, self._world_size, self._dp_degree, self._tp_degree, self._rank_list)
|
personal_str = f" rank={self._rank}, dp={self._dp_degree}, tp={self._tp_degree})"
|
||||||
|
return ranks_str + personal_str
|
||||||
else:
|
else:
|
||||||
return "ProcessGroup not initialized"
|
return "ProcessGroup not initialized"
|
||||||
|
|
||||||
|
|
|
@ -43,7 +43,6 @@ def _convert_to_coloparam(param: torch.nn.Parameter,
|
||||||
else:
|
else:
|
||||||
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
|
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
|
||||||
|
|
||||||
|
|
||||||
# if default_shard_plan exists, shard the param during initialization.
|
# if default_shard_plan exists, shard the param during initialization.
|
||||||
# This can reduce the model size after initialization.
|
# This can reduce the model size after initialization.
|
||||||
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
||||||
|
@ -130,30 +129,27 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||||
setattr(submodule, param_name, colo_param)
|
setattr(submodule, param_name, colo_param)
|
||||||
colo_param.shared_param_modules.append(submodule)
|
colo_param.shared_param_modules.append(submodule)
|
||||||
|
|
||||||
meta_param_flag = 0
|
param_number = 0
|
||||||
meta_buffer_flag = 0
|
meta_param_number = 0
|
||||||
|
buffer_number = 0
|
||||||
|
meta_buffer_number = 0
|
||||||
|
|
||||||
for param in module.parameters():
|
for param in module.parameters():
|
||||||
if param.device.type=="meta":
|
param_number += 1
|
||||||
meta_param_flag = 1
|
meta_param_number += (param.device.type == 'meta')
|
||||||
if meta_param_flag == 1 and param.device.type!="meta":
|
|
||||||
raise ValueError("Meta parameters and valued parameters can not be in the same model")
|
|
||||||
|
|
||||||
for buffer in module.buffers():
|
for buffer in module.buffers():
|
||||||
if buffer.device.type=="meta":
|
buffer_number += 1
|
||||||
meta_buffer_flag = 1
|
meta_buffer_number += (buffer.device.type == 'meta')
|
||||||
if meta_buffer_flag == 1 and buffer.device.type!="meta":
|
|
||||||
raise ValueError("Meta buffers and valued buffers can not be in the same model")
|
|
||||||
|
|
||||||
if meta_param_flag==1 and meta_buffer_flag==1:
|
if meta_param_number > 0 and meta_param_number != param_number:
|
||||||
pass
|
raise ValueError("Meta parameters and valued parameters can not be in the same model")
|
||||||
elif meta_buffer_flag==0 and meta_param_flag==1:
|
if meta_buffer_number > 0 and meta_buffer_number != buffer_number:
|
||||||
for name, buf in module.named_buffers():
|
raise ValueError("Meta buffers and valued buffers can not be in the same model")
|
||||||
module._buffers[name] = module._buffers[name].to(device=self._device)
|
|
||||||
elif meta_param_flag==0 and meta_buffer_flag==1:
|
if meta_buffer_number == 0:
|
||||||
for name, param in module.named_parameters():
|
for buffer in module.buffers():
|
||||||
module._parameters[name] = module._parameters[name].to(device=self._device)
|
buffer.data = buffer.data.to(device=self._device)
|
||||||
else:
|
|
||||||
module.to(self._device)
|
|
||||||
|
|
||||||
|
|
||||||
def post_process_colo_init_ctx(model: torch.nn.Module,
|
def post_process_colo_init_ctx(model: torch.nn.Module,
|
||||||
|
|
Loading…
Reference in New Issue