mirror of https://github.com/hpcaitech/ColossalAI
[utils] correct cpu memory used and capacity in the context of multi-process (#726)
parent
7db3ccc79b
commit
53cb584808
|
@ -8,6 +8,7 @@ from colossalai.utils import get_current_device
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
_GLOBAL_CUDA_MEM_FRACTION = 1.0
|
_GLOBAL_CUDA_MEM_FRACTION = 1.0
|
||||||
|
|
||||||
|
@ -106,7 +107,8 @@ def colo_device_memory_capacity(device: torch.device) -> int:
|
||||||
assert isinstance(device, torch.device)
|
assert isinstance(device, torch.device)
|
||||||
if device.type == 'cpu':
|
if device.type == 'cpu':
|
||||||
mem_info = _get_cpu_memory_info()
|
mem_info = _get_cpu_memory_info()
|
||||||
return mem_info.info.total / gpc.get_world_size(ParallelMode.DATA)
|
# In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory.
|
||||||
|
return mem_info.total / gpc.num_processes_on_current_node
|
||||||
if device.type == 'cuda':
|
if device.type == 'cuda':
|
||||||
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
|
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
|
||||||
|
|
||||||
|
@ -123,8 +125,9 @@ def colo_device_memory_used(device: torch.device) -> int:
|
||||||
"""
|
"""
|
||||||
if device.type == 'cpu':
|
if device.type == 'cpu':
|
||||||
mem_info = _get_cpu_memory_info()
|
mem_info = _get_cpu_memory_info()
|
||||||
# FIXME(jiaruifang) we need get how many processes are using the CPU memory.
|
# In the context of 1-CPU-N-GPU, the memory usage of the current process is 1/N CPU memory used.
|
||||||
ret = mem_info.used / gpc.get_world_size(ParallelMode.DATA)
|
# Each process consumes the same amount of memory.
|
||||||
|
ret = mem_info.used / gpc.num_processes_on_current_node
|
||||||
return ret
|
return ret
|
||||||
elif device.type == 'cuda':
|
elif device.type == 'cuda':
|
||||||
ret: int = torch.cuda.memory_allocated(device)
|
ret: int = torch.cuda.memory_allocated(device)
|
||||||
|
@ -142,6 +145,10 @@ def colo_set_process_memory_fraction(ratio: float) -> None:
|
||||||
Args:
|
Args:
|
||||||
ratio (float): a ratio between 0. ~ 1.
|
ratio (float): a ratio between 0. ~ 1.
|
||||||
"""
|
"""
|
||||||
|
if version.parse(torch.__version__) < version.parse('1.8'):
|
||||||
|
logger = get_dist_logger('colo_set_process_memory_fraction')
|
||||||
|
logger.warning('colo_set_process_memory_fraction failed because torch version is less than 1.8')
|
||||||
|
return
|
||||||
global _GLOBAL_CUDA_MEM_FRACTION
|
global _GLOBAL_CUDA_MEM_FRACTION
|
||||||
_GLOBAL_CUDA_MEM_FRACTION = ratio
|
_GLOBAL_CUDA_MEM_FRACTION = ratio
|
||||||
torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device())
|
torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device())
|
||||||
|
|
|
@ -31,6 +31,7 @@ class AsyncMemoryMonitor:
|
||||||
async_mem_monitor.finish()
|
async_mem_monitor.finish()
|
||||||
async_mem_monitor.save('log.pkl')
|
async_mem_monitor.save('log.pkl')
|
||||||
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
power (int, optional): the power of time interva. Defaults to 10.
|
power (int, optional): the power of time interva. Defaults to 10.
|
||||||
|
|
||||||
|
|
|
@ -16,7 +16,7 @@ from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardS
|
||||||
|
|
||||||
from colossalai.testing import rerun_on_exception
|
from colossalai.testing import rerun_on_exception
|
||||||
from colossalai.utils import get_current_device
|
from colossalai.utils import get_current_device
|
||||||
from tests.test_zero_data_parallel.common import CONFIG
|
from tests.test_zero.common import CONFIG
|
||||||
|
|
||||||
|
|
||||||
class MoeModel(CheckpointModule):
|
class MoeModel(CheckpointModule):
|
||||||
|
|
|
@ -16,7 +16,7 @@ from colossalai.engine.gradient_handler import MoeGradientHandler
|
||||||
from colossalai.context import MOE_CONTEXT
|
from colossalai.context import MOE_CONTEXT
|
||||||
from colossalai.testing import assert_equal_in_group
|
from colossalai.testing import assert_equal_in_group
|
||||||
|
|
||||||
from tests.test_zero_data_parallel.common import CONFIG, check_grads_padding, run_fwd_bwd
|
from tests.test_zero.common import CONFIG, check_grads_padding, run_fwd_bwd
|
||||||
from tests.test_moe.test_moe_zero_init import MoeModel
|
from tests.test_moe.test_moe_zero_init import MoeModel
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -20,7 +20,7 @@ from colossalai.engine.gradient_handler import MoeGradientHandler
|
||||||
from colossalai.context import MOE_CONTEXT
|
from colossalai.context import MOE_CONTEXT
|
||||||
from colossalai.testing import assert_equal_in_group
|
from colossalai.testing import assert_equal_in_group
|
||||||
|
|
||||||
from tests.test_zero_data_parallel.common import CONFIG, check_sharded_model_params
|
from tests.test_zero.common import CONFIG, check_sharded_model_params
|
||||||
from tests.test_moe.test_moe_zero_init import MoeModel
|
from tests.test_moe.test_moe_zero_init import MoeModel
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,32 @@
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
from colossalai.utils.cuda import get_current_device
|
||||||
|
from colossalai.utils.memory import colo_set_process_memory_fraction, colo_device_memory_capacity
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
|
||||||
|
|
||||||
|
def _run_colo_set_process_memory_fraction_and_colo_device_memory_capacity():
|
||||||
|
frac1 = colo_device_memory_capacity(get_current_device())
|
||||||
|
colo_set_process_memory_fraction(0.5)
|
||||||
|
frac2 = colo_device_memory_capacity(get_current_device())
|
||||||
|
assert frac2 * 2 == frac1
|
||||||
|
|
||||||
|
|
||||||
|
def run_dist(rank, world_size, port):
|
||||||
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
_run_colo_set_process_memory_fraction_and_colo_device_memory_capacity()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.dist
|
||||||
|
@pytest.mark.parametrize("world_size", [4, 5])
|
||||||
|
def test_memory_utils(world_size):
|
||||||
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_memory_utils(world_size=2)
|
|
@ -14,7 +14,7 @@ from colossalai.zero.sharded_model import ShardedModelV2
|
||||||
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
||||||
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
|
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
from tests.test_zero_data_parallel.test_sharded_optim_v2 import _run_step
|
from tests.test_zero.test_sharded_optim_v2 import _run_step
|
||||||
|
|
||||||
from common import CONFIG
|
from common import CONFIG
|
||||||
|
|
|
@ -11,7 +11,7 @@ from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardS
|
||||||
from colossalai.zero.sharded_param import ShardedTensor
|
from colossalai.zero.sharded_param import ShardedTensor
|
||||||
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
|
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
|
||||||
from colossalai.testing import rerun_on_exception
|
from colossalai.testing import rerun_on_exception
|
||||||
from tests.test_zero_data_parallel.common import CONFIG, allclose
|
from tests.test_zero.common import CONFIG, allclose
|
||||||
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor
|
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor
|
||||||
|
|
||||||
|
|
|
@ -5,7 +5,6 @@ from colossalai.utils.cuda import get_current_device
|
||||||
from colossalai.zero.sharded_param import (StatefulTensor, colo_tensor_mem_usage, colo_model_data_tensor_move,
|
from colossalai.zero.sharded_param import (StatefulTensor, colo_tensor_mem_usage, colo_model_data_tensor_move,
|
||||||
colo_model_data_tensor_move_inline, colo_model_data_move_to_cpu,
|
colo_model_data_tensor_move_inline, colo_model_data_move_to_cpu,
|
||||||
colo_model_tensor_clone)
|
colo_model_tensor_clone)
|
||||||
from colossalai.utils.memory import colo_set_process_memory_fraction, colo_device_memory_capacity
|
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
@ -32,13 +31,6 @@ def _run_colo_tensor_mem_usage():
|
||||||
assert g1 * 4 == g2
|
assert g1 * 4 == g2
|
||||||
|
|
||||||
|
|
||||||
def _run_colo_set_process_memory_fraction_and_colo_device_memory_capacity():
|
|
||||||
frac1 = colo_device_memory_capacity(get_current_device())
|
|
||||||
colo_set_process_memory_fraction(0.5)
|
|
||||||
frac2 = colo_device_memory_capacity(get_current_device())
|
|
||||||
assert frac2 * 2 == frac1
|
|
||||||
|
|
||||||
|
|
||||||
def _run_colo_model_data_tensor_move_inline():
|
def _run_colo_model_data_tensor_move_inline():
|
||||||
for t in [StatefulTensor(torch.randn(2, 3)), torch.randn(2, 3)]:
|
for t in [StatefulTensor(torch.randn(2, 3)), torch.randn(2, 3)]:
|
||||||
colo_model_data_tensor_move_inline(t, get_current_device())
|
colo_model_data_tensor_move_inline(t, get_current_device())
|
||||||
|
@ -82,20 +74,20 @@ def _run_colo_model_tensor_clone():
|
||||||
|
|
||||||
def run_dist(rank, world_size, port):
|
def run_dist(rank, world_size, port):
|
||||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
_run_colo_set_process_memory_fraction_and_colo_device_memory_capacity()
|
|
||||||
|
_run_colo_tensor_mem_usage()
|
||||||
_run_colo_model_data_tensor_move_inline()
|
_run_colo_model_data_tensor_move_inline()
|
||||||
_run_colo_model_data_tensor_move()
|
_run_colo_model_data_tensor_move()
|
||||||
_run_colo_tensor_mem_usage()
|
|
||||||
_run_colo_model_data_move_to_cpu()
|
_run_colo_model_data_move_to_cpu()
|
||||||
_run_colo_model_tensor_clone()
|
_run_colo_model_tensor_clone()
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize("world_size", [4, 5])
|
@pytest.mark.parametrize("world_size", [4, 5])
|
||||||
def test_tensor_move(world_size):
|
def test_zero_tensor_utils(world_size):
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_tensor_move(4)
|
test_zero_tensor_utils(world_size=2)
|
Loading…
Reference in New Issue