mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] implement softmax handler (#2132)
parent
c89c66a858
commit
536560ccc0
|
@ -15,6 +15,7 @@ from .output_handler import OuputHandler
|
|||
from .placeholder_handler import PlacehodlerHandler
|
||||
from .registry import operator_registry
|
||||
from .reshape_handler import ReshapeHandler
|
||||
from .softmax_handler import SoftmaxHandler
|
||||
from .sum_handler import SumHandler
|
||||
from .tensor_constructor_handler import TensorConstructorHandler
|
||||
from .unary_elementwise_handler import UnaryElementwiseHandler
|
||||
|
@ -26,5 +27,5 @@ __all__ = [
|
|||
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
|
||||
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler',
|
||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler',
|
||||
'EmbeddingModuleHandler', 'EmbeddingFunctionHandler', 'SumHandler'
|
||||
'EmbeddingModuleHandler', 'EmbeddingFunctionHandler', 'SumHandler', 'SoftmaxHandler'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
|
||||
from ..sharding_strategy import OperationData, OperationDataType
|
||||
from .node_handler import NodeHandler
|
||||
from .registry import operator_registry
|
||||
from .strategy import SoftmaxGenerator, StrategyGenerator
|
||||
|
||||
__all__ = ['SoftmaxHandler']
|
||||
|
||||
|
||||
@operator_registry.register(torch.nn.Softmax)
|
||||
@operator_registry.register(torch.nn.functional.softmax)
|
||||
class SoftmaxHandler(NodeHandler):
|
||||
"""
|
||||
A SoftmaxHandler which deals with the sharding strategies for
|
||||
torch.nn.Softmax or torch.nn.functional.softmax.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(SoftmaxGenerator(op_data_mapping, self.device_mesh, self.node.args[0]))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# check if the input operand is a parameter
|
||||
if isinstance(self.node.args[0]._meta_data, torch.nn.parameter.Parameter):
|
||||
data_type = OperationDataType.PARAM
|
||||
else:
|
||||
data_type = OperationDataType.ARG
|
||||
|
||||
input_data = self.node.args[0]._meta_data
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]), type=data_type, data=input_data)
|
||||
|
||||
softmax_dim = self.node.kwargs['dim']
|
||||
|
||||
num_dims = self.node.args[0]._meta_data.dim()
|
||||
# recover negative value to positive
|
||||
if softmax_dim < 0:
|
||||
softmax_dim += num_dims
|
||||
|
||||
physical_dim_operand = OperationData(name='softmax_dim', type=OperationDataType.ARG, data=softmax_dim)
|
||||
|
||||
output_data = self.node._meta_data
|
||||
physical_output_operand = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=output_data)
|
||||
|
||||
mapping = {
|
||||
"input": physical_input_operand,
|
||||
"softmax_dim": physical_dim_operand,
|
||||
"output": physical_output_operand
|
||||
}
|
||||
|
||||
return mapping
|
|
@ -15,6 +15,7 @@ from .normal_pooling_generator import NormalPoolStrategyGenerator
|
|||
from .output_generator import OutputGenerator
|
||||
from .placeholder_generator import PlaceholderGenerator
|
||||
from .reshape_generator import ReshapeGenerator
|
||||
from .softmax_generator import SoftmaxGenerator
|
||||
from .strategy_generator import StrategyGenerator
|
||||
from .sum_generator import SumGenerator
|
||||
from .tensor_constructor_generator import TensorConstructorGenerator
|
||||
|
@ -27,5 +28,5 @@ __all__ = [
|
|||
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
||||
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
|
||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator',
|
||||
'TensorConstructorGenerator', 'EmbeddingStrategyGenerator', 'SumGenerator'
|
||||
'TensorConstructorGenerator', 'EmbeddingStrategyGenerator', 'SumGenerator', 'SoftmaxGenerator'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,104 @@
|
|||
import copy
|
||||
import operator
|
||||
from functools import reduce
|
||||
from typing import List
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.strategy.strategy_generator import FollowingStrategyGenerator
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
CommAction,
|
||||
CommType,
|
||||
MemoryCost,
|
||||
ShardingStrategy,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.auto_parallel.tensor_shard.utils import (
|
||||
check_keep_sharding_status,
|
||||
detect_reshape_mapping,
|
||||
infer_output_dim_partition_dict,
|
||||
)
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
|
||||
__all__ = ['SoftmaxGenerator']
|
||||
|
||||
|
||||
class SoftmaxGenerator(FollowingStrategyGenerator):
|
||||
"""
|
||||
SoftmaxGenerator is used to generate strategies for torch.nn.Softmax or F.softmax.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy):
|
||||
'''
|
||||
Compute the computation cost per device with this specific strategy.
|
||||
'''
|
||||
sharded_input_shape = strategy.sharding_specs[self.op_data['input']].get_sharded_shape_per_device()
|
||||
sharded_output_shape = strategy.sharding_specs[self.op_data['output']].get_sharded_shape_per_device()
|
||||
input_size_product = reduce(operator.mul, sharded_input_shape)
|
||||
output_size_product = reduce(operator.mul, sharded_output_shape)
|
||||
|
||||
forward_compute_cost = output_size_product * 2
|
||||
backward_compute_cost = input_size_product
|
||||
total_compute_cost = forward_compute_cost + backward_compute_cost
|
||||
compute_cost = TrainCycleItem(fwd=forward_compute_cost, bwd=backward_compute_cost, total=total_compute_cost)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy):
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
forward_size_mapping = {
|
||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
||||
'output': self._compute_size_in_bytes(strategy, "output")
|
||||
}
|
||||
|
||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
||||
backward_size_mapping.pop("output")
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
|
||||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||
strategy_list = []
|
||||
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
||||
dim_partition_dict_mapping = {}
|
||||
communication_action_mapping = {}
|
||||
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
||||
dim_partition_dict_for_input = copy.deepcopy(input_sharding_spec.dim_partition_dict)
|
||||
softmax_dim = self.op_data['softmax_dim'].data
|
||||
|
||||
if softmax_dim in dim_partition_dict_for_input:
|
||||
recover_dims = dim_partition_dict_for_input.pop(softmax_dim)
|
||||
|
||||
dim_partition_dict_for_output = copy.deepcopy(dim_partition_dict_for_input)
|
||||
dim_partition_dict_mapping = {
|
||||
"input": dim_partition_dict_for_input,
|
||||
"output": dim_partition_dict_for_output,
|
||||
}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
# add index into name to pass the duplicated check
|
||||
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
||||
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
||||
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
strategy_list.append(strategy)
|
||||
|
||||
return strategy_list
|
|
@ -16,8 +16,6 @@ __all__ = ['UnaryElementwiseHandler']
|
|||
@operator_registry.register(torch.nn.ReLU)
|
||||
@operator_registry.register(torch.nn.Tanh)
|
||||
@operator_registry.register(torch.tanh)
|
||||
# TODO: softmax need to be relocated
|
||||
@operator_registry.register(torch.nn.functional.softmax)
|
||||
@operator_registry.register(torch.nn.modules.dropout.Dropout)
|
||||
@operator_registry.register(torch.Tensor.contiguous)
|
||||
@operator_registry.register(torch.nn.functional.dropout)
|
||||
|
|
|
@ -0,0 +1,186 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.softmax_handler import SoftmaxHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||
|
||||
|
||||
class LinearSplitModel(nn.Module):
|
||||
|
||||
def __init__(self, softmax_dim):
|
||||
super().__init__()
|
||||
self.softmax_dim = softmax_dim
|
||||
|
||||
def forward(self, input, other):
|
||||
linear_node = F.linear(input, other, bias=None)
|
||||
softmax_node = F.softmax(linear_node, self.softmax_dim)
|
||||
return softmax_node
|
||||
|
||||
|
||||
def check_split_handler(rank, softmax_dim, model_cls, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = model_cls(softmax_dim=softmax_dim).cuda()
|
||||
|
||||
input = torch.rand(8, 16, 64, 32).to('cuda')
|
||||
other = torch.rand(64, 32).to('cuda')
|
||||
# index of linear node in computation graph
|
||||
node_index = 2
|
||||
# total number of linear strategies
|
||||
strategy_number = 23
|
||||
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input, other],
|
||||
meta_arg_names=['input', 'other'],
|
||||
node_type='following')
|
||||
tracer = ColoTracer()
|
||||
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
||||
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
|
||||
# %softmax : [#users=1] = call_method[target=split](args = (%linear,), kwargs = {})
|
||||
# return split
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(8, 16, 64, 32).to('meta'),
|
||||
"other": torch.rand(64, 32).to('meta'),
|
||||
})
|
||||
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
previous_mod_node = list(graph.nodes)[2]
|
||||
split_node = list(graph.nodes)[3]
|
||||
split_strategies_vector = StrategiesVector(split_node)
|
||||
previous_strategies_vector = StrategiesVector(previous_mod_node)
|
||||
|
||||
# build handler
|
||||
assert len(previous_strategies_vector) == 0
|
||||
linear_handler = LinearFunctionHandler(node=previous_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=previous_strategies_vector)
|
||||
linear_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
|
||||
|
||||
softmax_handler = SoftmaxHandler(node=split_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=split_strategies_vector)
|
||||
|
||||
softmax_handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = softmax_handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "linear"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64])
|
||||
|
||||
assert mapping['softmax_dim'].name == "softmax_dim"
|
||||
assert mapping['softmax_dim'].data == softmax_dim
|
||||
assert mapping['softmax_dim'].type == OperationDataType.ARG
|
||||
|
||||
assert mapping['output'].name == "softmax"
|
||||
assert mapping['output'].data.shape == torch.Size([8, 16, 64, 64])
|
||||
assert mapping['output'].logical_shape == torch.Size([8, 16, 64, 64])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
||||
assert len(split_strategies_vector) == len(previous_strategies_vector)
|
||||
strategy_name_list = [strategy.name for strategy in split_strategies_vector]
|
||||
|
||||
if softmax_dim == 0:
|
||||
assert '[R, R, R, S1] -> [R, R, R, S1]_0' in strategy_name_list
|
||||
assert '[R, S0, R, S1] -> [R, S0, R, S1]_1' in strategy_name_list
|
||||
assert '[R, R, S0, S1] -> [R, R, S0, S1]_2' in strategy_name_list
|
||||
assert '[R, R, R, S0] -> [R, R, R, S0]_3' in strategy_name_list
|
||||
assert '[R, S1, R, S0] -> [R, S1, R, S0]_4' in strategy_name_list
|
||||
assert '[R, R, S1, S0] -> [R, R, S1, S0]_5' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_6' in strategy_name_list
|
||||
assert '[R, S0, R, R] -> [R, S0, R, R]_7' in strategy_name_list
|
||||
assert '[R, R, S0, R] -> [R, R, S0, R]_8' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_9' in strategy_name_list
|
||||
assert '[R, S1, R, R] -> [R, S1, R, R]_10' in strategy_name_list
|
||||
assert '[R, R, S1, R] -> [R, R, S1, R]_11' in strategy_name_list
|
||||
assert '[R, R, R, S1] -> [R, R, R, S1]_12' in strategy_name_list
|
||||
assert '[R, R, R, S0] -> [R, R, R, S0]_13' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_15' in strategy_name_list
|
||||
assert '[R, R, R, S0] -> [R, R, R, S0]_16' in strategy_name_list
|
||||
assert '[R, R, R, S1] -> [R, R, R, S1]_17' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_18' in strategy_name_list
|
||||
assert '[R, S01, R, R] -> [R, S01, R, R]_19' in strategy_name_list
|
||||
assert '[R, R, S01, R] -> [R, R, S01, R]_20' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_21' in strategy_name_list
|
||||
assert '[R, R, R, S01] -> [R, R, R, S01]_22' in strategy_name_list
|
||||
|
||||
if softmax_dim == 1:
|
||||
assert '[S0, R, R, S1] -> [S0, R, R, S1]_0' in strategy_name_list
|
||||
assert '[R, R, R, S1] -> [R, R, R, S1]_1' in strategy_name_list
|
||||
assert '[R, R, S0, S1] -> [R, R, S0, S1]_2' in strategy_name_list
|
||||
assert '[S1, R, R, S0] -> [S1, R, R, S0]_3' in strategy_name_list
|
||||
assert '[R, R, R, S0] -> [R, R, R, S0]_4' in strategy_name_list
|
||||
assert '[R, R, S1, S0] -> [R, R, S1, S0]_5' in strategy_name_list
|
||||
assert '[S0, R, R, R] -> [S0, R, R, R]_6' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_7' in strategy_name_list
|
||||
assert '[R, R, S0, R] -> [R, R, S0, R]_8' in strategy_name_list
|
||||
assert '[S1, R, R, R] -> [S1, R, R, R]_9' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_10' in strategy_name_list
|
||||
assert '[R, R, S1, R] -> [R, R, S1, R]_11' in strategy_name_list
|
||||
assert '[R, R, R, S1] -> [R, R, R, S1]_12' in strategy_name_list
|
||||
assert '[R, R, R, S0] -> [R, R, R, S0]_13' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_14' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_15' in strategy_name_list
|
||||
assert '[R, R, R, S0] -> [R, R, R, S0]_16' in strategy_name_list
|
||||
assert '[R, R, R, S1] -> [R, R, R, S1]_17' in strategy_name_list
|
||||
assert '[S01, R, R, R] -> [S01, R, R, R]_18' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_19' in strategy_name_list
|
||||
assert '[R, R, S01, R] -> [R, R, S01, R]_20' in strategy_name_list
|
||||
assert '[R, R, R, R] -> [R, R, R, R]_21' in strategy_name_list
|
||||
assert '[R, R, R, S01] -> [R, R, R, S01]_22' in strategy_name_list
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@parameterize('softmax_dim', [0, 1, 2, 3])
|
||||
@parameterize('model_cls', [LinearSplitModel])
|
||||
def test_split_handler(softmax_dim, model_cls):
|
||||
world_size = 4
|
||||
run_func = partial(check_split_handler,
|
||||
softmax_dim=softmax_dim,
|
||||
model_cls=model_cls,
|
||||
world_size=world_size,
|
||||
port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_split_handler()
|
Loading…
Reference in New Issue