mirror of https://github.com/hpcaitech/ColossalAI
[test] fixed hybrid parallel test case on 8 GPUs (#1106)
parent
85b58093d2
commit
53297330c0
|
@ -20,11 +20,8 @@ from colossalai.utils import is_using_pp, get_dataloader
|
|||
from colossalai.pipeline.pipelinable import PipelinableContext
|
||||
from tqdm import tqdm
|
||||
from torchvision.datasets import CIFAR10
|
||||
from torchvision.transforms import transforms
|
||||
try:
|
||||
from titans.model.vit import vit_tiny_patch4_32
|
||||
except:
|
||||
pass
|
||||
from torchvision import transforms
|
||||
from titans.model.vit import vit_tiny_patch4_32
|
||||
|
||||
BATCH_SIZE = 4
|
||||
NUM_EPOCHS = 60
|
||||
|
@ -47,13 +44,13 @@ def run_trainer(rank, world_size, port):
|
|||
with pipelinable:
|
||||
model = vit_tiny_patch4_32()
|
||||
pipelinable.to_layer_list()
|
||||
pipelinable.load_policy("uniform")
|
||||
pipelinable.policy = "uniform"
|
||||
model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
|
||||
|
||||
# craete dataloaders
|
||||
root = Path(os.environ['DATA'])
|
||||
transform_train = transforms.Compose([
|
||||
transforms.RandomCrop(224, padding=4, pad_if_needed=True),
|
||||
transforms.RandomCrop(32, padding=4, pad_if_needed=True),
|
||||
transforms.AutoAugment(policy=transforms.AutoAugmentPolicy.CIFAR10),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
||||
|
@ -71,11 +68,10 @@ def run_trainer(rank, world_size, port):
|
|||
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=NUM_EPOCHS, warmup_steps=WARMUP_EPOCHS)
|
||||
|
||||
# intiailize
|
||||
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(model=model,
|
||||
engine, train_dataloader, *_ = colossalai.initialize(model=model,
|
||||
optimizer=optimizer,
|
||||
criterion=criterion,
|
||||
train_dataloader=train_dataloader,
|
||||
test_dataloader=test_dataloader)
|
||||
train_dataloader=train_dataloader)
|
||||
|
||||
logger = get_dist_logger()
|
||||
|
||||
|
|
Loading…
Reference in New Issue