mirror of https://github.com/hpcaitech/ColossalAI
[checkpoint] make unitest faster (#1217)
parent
f38006ea83
commit
52736205d9
|
@ -5,7 +5,8 @@ import collections
|
||||||
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
||||||
from colossalai.utils.model.colo_init_context import colo_state_dict
|
from colossalai.utils.model.colo_init_context import colo_state_dict
|
||||||
|
|
||||||
def save_checkpoint(dire,
|
|
||||||
|
def save_checkpoint(dire: str,
|
||||||
epoch: int,
|
epoch: int,
|
||||||
model: torch.nn.Module,
|
model: torch.nn.Module,
|
||||||
optimizer: torch.optim.Optimizer = None,
|
optimizer: torch.optim.Optimizer = None,
|
||||||
|
@ -15,30 +16,21 @@ def save_checkpoint(dire,
|
||||||
"""save_checkpoint
|
"""save_checkpoint
|
||||||
save a model, whose parameters are `ColoTensor`s.
|
save a model, whose parameters are `ColoTensor`s.
|
||||||
Args:
|
Args:
|
||||||
dire (_type_): _description_
|
dire (str): directory to save the checkpoint files.
|
||||||
epoch (int): _description_
|
epoch (int): the number of epoch
|
||||||
model (torch.nn.Module): _description_
|
model (torch.nn.Module): a torch module initialized by ColoInitContext
|
||||||
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
|
optimizer (torch.optim.Optimizer, optional): optimizers. Defaults to None.
|
||||||
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
|
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None.
|
||||||
"""
|
"""
|
||||||
model_state = {
|
model_state = {'epoch': epoch, 'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)}
|
||||||
'epoch': epoch,
|
|
||||||
'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)
|
|
||||||
}
|
|
||||||
if dist.get_rank() == 0:
|
if dist.get_rank() == 0:
|
||||||
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
|
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
|
||||||
lr_scheduler_dict = lr_scheduler.state_dict()
|
lr_scheduler_dict = lr_scheduler.state_dict()
|
||||||
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
|
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
|
||||||
optim_state = {
|
optim_state = {'epoch': epoch, 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler_dict}
|
||||||
'epoch': epoch,
|
|
||||||
'optimizer': optimizer.state_dict(),
|
|
||||||
'lr_scheduler': lr_scheduler_dict
|
|
||||||
}
|
|
||||||
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
|
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def load_checkpoint(dire,
|
def load_checkpoint(dire,
|
||||||
epoch: int,
|
epoch: int,
|
||||||
rank: int,
|
rank: int,
|
||||||
|
@ -64,10 +56,7 @@ def load_checkpoint(dire,
|
||||||
optimizer.load_state_dict(optim_state['optimizer'])
|
optimizer.load_state_dict(optim_state['optimizer'])
|
||||||
lr_scheduler_dict = optim_state['lr_scheduler']
|
lr_scheduler_dict = optim_state['lr_scheduler']
|
||||||
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
|
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
|
||||||
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(
|
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(optimizer, after_scheduler_dict['T_max'],
|
||||||
optimizer,
|
after_scheduler_dict['eta_min'],
|
||||||
after_scheduler_dict['T_max'],
|
after_scheduler_dict['last_epoch'])
|
||||||
after_scheduler_dict['eta_min'],
|
|
||||||
after_scheduler_dict['last_epoch']
|
|
||||||
)
|
|
||||||
lr_scheduler.load_state_dict(lr_scheduler_dict)
|
lr_scheduler.load_state_dict(lr_scheduler_dict)
|
||||||
|
|
|
@ -1,21 +1,20 @@
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
import os, sys, shutil
|
import os, shutil
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import pytest
|
import pytest
|
||||||
import copy
|
import copy
|
||||||
import operator
|
from functools import partial
|
||||||
import colossalai
|
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
import colossalai
|
||||||
from colossalai.testing import rerun_if_address_is_in_use
|
from colossalai.testing import rerun_if_address_is_in_use
|
||||||
from colossalai.utils.cuda import get_current_device
|
from colossalai.utils.cuda import get_current_device
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
from colossalai.tensor import ColoTensorSpec, ComputePattern, ComputeSpec, DistSpecManager, distspec, ProcessGroup, ColoTensor
|
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, distspec, ProcessGroup
|
||||||
from colossalai.core import global_context as gpc
|
|
||||||
from functools import partial
|
|
||||||
from colossalai.nn.parallel.data_parallel import ColoDDP
|
from colossalai.nn.parallel.data_parallel import ColoDDP
|
||||||
from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint
|
from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint
|
||||||
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
||||||
|
@ -46,15 +45,17 @@ class DummyDataGenerator(ABC):
|
||||||
|
|
||||||
|
|
||||||
class DummyDataLoader(DummyDataGenerator):
|
class DummyDataLoader(DummyDataGenerator):
|
||||||
batch_size = 128
|
|
||||||
category = 16
|
def __init__(self, batch_size, category, feature_size, length=10):
|
||||||
feature_size = 256
|
super().__init__(length)
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.category = category
|
||||||
|
self.feature_size = feature_size
|
||||||
|
|
||||||
def generate(self):
|
def generate(self):
|
||||||
image_dict = {}
|
image_dict = {}
|
||||||
image_dict['pixel_values'] = torch.rand(
|
image_dict['pixel_values'] = torch.rand(self.batch_size, self.feature_size, device=get_current_device()) * 2 - 1
|
||||||
DummyDataLoader.batch_size, DummyDataLoader.feature_size, device=get_current_device()) * 2 - 1
|
image_dict['label'] = torch.randint(self.category, (self.batch_size,),
|
||||||
image_dict['label'] = torch.randint(DummyDataLoader.category, (DummyDataLoader.batch_size,),
|
|
||||||
dtype=torch.int64,
|
dtype=torch.int64,
|
||||||
device=get_current_device())
|
device=get_current_device())
|
||||||
return image_dict
|
return image_dict
|
||||||
|
@ -102,11 +103,15 @@ def remove(path):
|
||||||
|
|
||||||
|
|
||||||
def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
def run_checkpoint(init_spec_func, use_ddp, test_epoch, pg):
|
||||||
train_dataloader = DummyDataLoader(length=16)
|
batch = 3
|
||||||
|
feature = 32
|
||||||
|
category = 16
|
||||||
|
train_dataloader = DummyDataLoader(batch, category, feature, length=16)
|
||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
model = MLP(256, 16, 64)
|
model = MLP(feature, category)
|
||||||
model_reload = MLP(256, 16, 64)
|
model_reload = MLP(feature, category)
|
||||||
model_ref = MLP(256, 16, 64)
|
model_ref = MLP(feature, category)
|
||||||
|
|
||||||
model = model.cuda()
|
model = model.cuda()
|
||||||
model_reload = model_reload.cuda()
|
model_reload = model_reload.cuda()
|
||||||
model_ref = model_ref.cuda()
|
model_ref = model_ref.cuda()
|
||||||
|
|
Loading…
Reference in New Issue