mirror of https://github.com/hpcaitech/ColossalAI
[NFC] remove redundant dependency (#1869)
* remove redundant config * remove redundant dependencypull/1871/head
parent
fd8f0ca5a8
commit
50c4cb0167
|
@ -59,7 +59,7 @@ you should the change the `data.file_path` in the `config/train_colossalai.yaml`
|
|||
|
||||
## Training
|
||||
|
||||
we provide the script `train.sh` to run the training task , and three Stategy in `configs`:`train_colossalai.yaml`, `train_ddp.yaml`, `train_deepspeed.yaml`
|
||||
we provide the script `train.sh` to run the training task , and two Stategy in `configs`:`train_colossalai.yaml`, `train_ddp.yaml`
|
||||
|
||||
for example, you can run the training from colossalai by
|
||||
```
|
||||
|
|
|
@ -1,117 +0,0 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: image
|
||||
cond_stage_key: caption
|
||||
image_size: 32
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1.e-4 ]
|
||||
f_min: [ 1.e-10 ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: False
|
||||
legacy: False
|
||||
use_fp16: True
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
params:
|
||||
use_fp16: True
|
||||
|
||||
data:
|
||||
target: main.DataModuleFromConfig
|
||||
params:
|
||||
batch_size: 4
|
||||
wrap: False
|
||||
train:
|
||||
target: ldm.data.base.Txt2ImgIterableBaseDataset
|
||||
params:
|
||||
file_path: "/data/scratch/diffuser/laion_part0/"
|
||||
world_size: 1
|
||||
rank: 0
|
||||
|
||||
lightning:
|
||||
trainer:
|
||||
accelerator: 'gpu'
|
||||
devices: 4
|
||||
log_gpu_memory: all
|
||||
max_epochs: 2
|
||||
precision: 16
|
||||
auto_select_gpus: False
|
||||
strategy:
|
||||
target: pytorch_lightning.strategies.DeepSpeedStrategy
|
||||
params:
|
||||
stage: 2
|
||||
zero_optimization: True
|
||||
offload_optimizer: False
|
||||
offload_parameters: False
|
||||
log_every_n_steps: 2
|
||||
# max_steps: 6o
|
||||
logger: True
|
||||
default_root_dir: "/tmp/diff_log/"
|
||||
profiler: pytorch
|
||||
|
||||
logger_config:
|
||||
wandb:
|
||||
target: pytorch_lightning.loggers.WandbLogger
|
||||
params:
|
||||
name: nowname
|
||||
save_dir: logdir
|
||||
offline: opt.debug
|
||||
id: nowname
|
||||
|
||||
|
|
@ -26,7 +26,6 @@ dependencies:
|
|||
- transformers==4.19.2
|
||||
- torchmetrics==0.6.0
|
||||
- kornia==0.6
|
||||
- deepspeed==0.7.4
|
||||
- prefetch_generator
|
||||
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
||||
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
||||
|
|
Loading…
Reference in New Issue