[zero] add unit test for AgChunk's append, close, access (#1423)

pull/1426/head
HELSON 2022-08-09 18:03:10 +08:00 committed by GitHub
parent c577ed016e
commit 4fb3c52cf0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 133 additions and 3 deletions

View File

@ -36,7 +36,7 @@ class AgChunk:
self.utilized_size = 0 self.utilized_size = 0
# Here, we use torch process group, # Here, we use torch process group,
# since ColoProcessGroup might get deprecated soon # since ColoProcessGroup might get deprecated soon
self.torch_pg = process_group.dp_process_group self.torch_pg = process_group.dp_process_group()
self.pg_size = dist.get_world_size(self.torch_pg) self.pg_size = dist.get_world_size(self.torch_pg)
self.pg_rank = dist.get_rank(self.torch_pg) self.pg_rank = dist.get_rank(self.torch_pg)
@ -69,6 +69,8 @@ class AgChunk:
# some chunks can keep gathered all the time # some chunks can keep gathered all the time
# so their computation patterns are the same as that of the parameters in DDP # so their computation patterns are the same as that of the parameters in DDP
self.keep_gathered = keep_gathered self.keep_gathered = keep_gathered
if self.keep_gathered:
pin_memory = False # since this chunk is gathered, it doesn't need to pin
# if pin_memory is True, we allocate a piece of CPU pin-memory # if pin_memory is True, we allocate a piece of CPU pin-memory
# for it all the time # for it all the time
@ -134,7 +136,7 @@ class AgChunk:
if new_utilized_size > self.chunk_size: if new_utilized_size > self.chunk_size:
raise ChunkFullError raise ChunkFullError
self.chunk_temp[self.utilized_size: new_utilized_size].copy_(tensor.flatten()) self.chunk_temp[self.utilized_size: new_utilized_size].copy_(tensor.data.flatten())
assert type(self.chunk_temp) == torch.Tensor, "copy_tensor_to_chunk_slice must use a torch tensor" assert type(self.chunk_temp) == torch.Tensor, "copy_tensor_to_chunk_slice must use a torch tensor"
tensor.data = self.chunk_temp[self.utilized_size: new_utilized_size].view(tensor.shape) tensor.data = self.chunk_temp[self.utilized_size: new_utilized_size].view(tensor.shape)
@ -145,7 +147,7 @@ class AgChunk:
self.tensors_state_monitor[tensor_state] += 1 self.tensors_state_monitor[tensor_state] += 1
self.utilized_size = new_utilized_size self.utilized_size = new_utilized_size
def close_chunk(self, shard_dev: torch.device): def close_chunk(self, shard_dev: Optional[torch.device] = None):
"""Close the chunk. Any tensor can't be appended to a closed chunk. """Close the chunk. Any tensor can't be appended to a closed chunk.
""" """
# sanity check # sanity check
@ -159,6 +161,14 @@ class AgChunk:
self.__scatter() self.__scatter()
if self.keep_gathered:
if shard_dev is None:
shard_dev = get_current_device()
else:
assert shard_dev.type == 'cuda'
elif shard_dev is None:
shard_dev = torch.device('cpu')
if self.pin_memory or shard_dev.type == 'cpu': if self.pin_memory or shard_dev.type == 'cpu':
self.cpu_shard = torch.empty(self.shard_size, self.cpu_shard = torch.empty(self.shard_size,
dtype=self.dtype, dtype=self.dtype,
@ -364,3 +374,42 @@ class AgChunk:
for tensor_info in self.tensors_info.values(): for tensor_info in self.tensors_info.values():
if prev_state is None or tensor_info.state == prev_state: if prev_state is None or tensor_info.state == prev_state:
self.__update_one_tensor_info(tensor_info, next_state) self.__update_one_tensor_info(tensor_info, next_state)
def __repr__(self, detailed: bool = False):
output = [
"AgChunk Information:\n",
"\tchunk size: {}, chunk dtype: {}, process group size: {}\n".format(
self.chunk_size, self.dtype, self.pg_size),
"\t# of tensors: {}, utilized size: {}, utilized percentage: {:.2f}\n".format(
self.num_tensors, self.utilized_size, self.utilized_size / self.chunk_size)
]
def print_tensor(tensor, prefix=''):
output.append("{}shape: {}, dtype: {}, device: {}\n".format(
prefix, tensor.shape, tensor.dtype, tensor.device))
if self.chunk_temp is not None:
output.append("\tchunk temp:\n")
print_tensor(tensor=self.chunk_temp, prefix='\t\t')
if self.chunk_total is not None and self.chunk_total.storage().size() > 0:
output.append("\tchunk total:\n")
print_tensor(tensor=self.chunk_total, prefix='\t\t')
if self.cuda_shard is not None:
output.append("\tcuda shard:\n")
print_tensor(tensor=self.cuda_shard, prefix='\t\t')
if self.cpu_shard is not None:
output.append("\tcpu shard:\n")
print_tensor(tensor=self.cpu_shard, prefix='\t\t')
memory_info = self.memory_usage
output.append("\tmemory usage: cuda {}, cpu {}\n".format(memory_info['cuda'], memory_info['cpu']))
if detailed:
output.append("\ttensor state monitor:\n")
for st in TensorState:
output.append("\t\t# of {}: {}\n".format(st, self.tensors_state_monitor[st]))
return ''.join(output)

View File

@ -0,0 +1,81 @@
import torch
import colossalai
import pytest
import torch.multiprocessing as mp
from functools import partial
from colossalai.testing import rerun_if_address_is_in_use, parameterize
from colossalai.utils import free_port, get_current_device
from colossalai.tensor import ProcessGroup as ColoProcessGroup
from colossalai.tensor import ColoParameter
from colossalai.gemini.ag_chunk import AgChunk
def add_param(param_list, param_cp_list, *args, **kwargs):
param = ColoParameter(torch.empty(*args, **kwargs))
param_list.append(param)
param_cp_list.append(param.clone())
def check_euqal(param, param_cp):
if param.device != param_cp.device:
temp = param.data.to(param_cp.device)
else:
temp = param.data
return torch.equal(temp, param_cp.data)
@parameterize('init_device', [None, torch.device('cpu')])
@parameterize('keep_gathered', [True, False])
@parameterize('pin_memory', [True, False])
def exam_chunk_init(init_device, keep_gathered, pin_memory):
world_size = torch.distributed.get_world_size()
pg = ColoProcessGroup()
my_chunk = AgChunk(
chunk_size=1024,
process_group=pg,
dtype=torch.float32,
init_device=init_device,
keep_gathered=keep_gathered,
pin_memory=pin_memory
)
param_list = []
param_cp_list = []
add_param(param_list, param_cp_list, 8, 8, 8, device='cuda')
add_param(param_list, param_cp_list, 4, 4)
add_param(param_list, param_cp_list, 4, 8, 2, device='cuda')
add_param(param_list, param_cp_list, 1, 1, 5)
for param in param_list:
my_chunk.append_tensor(param)
assert my_chunk.utilized_size == 597
for param, param_cp in zip(param_list, param_cp_list):
check_euqal(param, param_cp)
my_chunk.close_chunk()
if keep_gathered is False:
assert my_chunk.cpu_shard.size(0) == 1024 // world_size
my_chunk.shard_move(get_current_device())
my_chunk.access_chunk()
for param, param_cp in zip(param_list, param_cp_list):
check_euqal(param, param_cp)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_chunk_init()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2, 4])
@rerun_if_address_is_in_use()
def test_chunk_function(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_chunk_function(2)