|
|
|
@ -20,14 +20,15 @@ from tests.test_moe.moe_utils import assert_loose_close, check_model_equal
|
|
|
|
|
NUM_BATCH = 8 |
|
|
|
|
NUM_TOK_PER_BATCH, NUM_EXPERTS = 64, 4 |
|
|
|
|
NUM_LAYERS = 4 |
|
|
|
|
HIDDEN_SIZE_PER_HEAD = 4 |
|
|
|
|
HIDDEN_SIZE_PER_HEAD = 8 |
|
|
|
|
NUM_HEADS = 8 |
|
|
|
|
TOP_K = 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_deepseek_commom(config: Tuple[int, ...]): |
|
|
|
|
def run_deepseek_commom(parallel_config: Tuple[int, ...]): |
|
|
|
|
Randomizer.reset_index() |
|
|
|
|
stage, ep_size, pp_size, tp_size, sp_size = config |
|
|
|
|
print(f"rank {dist.get_rank()} testing {parallel_config}") |
|
|
|
|
stage, ep_size, pp_size, tp_size, sp_size = parallel_config |
|
|
|
|
world_size = dist.get_world_size() |
|
|
|
|
rank = dist.get_rank() |
|
|
|
|
dtype, precision = torch.bfloat16, "bf16" |
|
|
|
@ -65,6 +66,7 @@ def run_deepseek_commom(config: Tuple[int, ...]):
|
|
|
|
|
attn_implementation="flash_attention_2", |
|
|
|
|
torch_dtype="float16", |
|
|
|
|
n_routed_experts=NUM_EXPERTS, |
|
|
|
|
n_shared_experts=2, |
|
|
|
|
num_experts_per_tok=TOP_K, |
|
|
|
|
trust_remote_code=True, |
|
|
|
|
) |
|
|
|
@ -159,7 +161,7 @@ def run_deepseek_commom(config: Tuple[int, ...]):
|
|
|
|
|
if rank == world_size - 1: |
|
|
|
|
shutil.rmtree(model_dir) |
|
|
|
|
|
|
|
|
|
print(f"rank {dist.get_rank()} test passed") |
|
|
|
|
print(f"rank {dist.get_rank()} passed {parallel_config}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize( |
|
|
|
|