mirror of https://github.com/hpcaitech/ColossalAI
[kernel] support pure fp16 for cpu adam and update gemini optim tests (#4921)
* [kernel] support pure fp16 for cpu adam (#4896) * [kernel] fix cpu adam kernel for pure fp16 and update tests (#4919) * [kernel] fix cpu adam * [test] update gemini optim testpull/4934/head
parent
7768afbad0
commit
4f68b3f10c
|
@ -35,23 +35,19 @@ SOFTWARE
|
|||
void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
||||
float *_exp_avg_sq, size_t _param_size,
|
||||
bool param_half_precision, bool grad_half_precision,
|
||||
float loss_scale) {
|
||||
size_t rounded_size = 0;
|
||||
bool momentum_half_precision,
|
||||
bool variance_half_precision, float loss_scale) {
|
||||
size_t rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH);
|
||||
|
||||
float betta1_minus1 = 1 - _betta1;
|
||||
float betta2_minus1 = 1 - _betta2;
|
||||
float step_size = -1 * _alpha / _bias_correction1;
|
||||
float w_decay = -1 * _alpha * _weight_decay;
|
||||
|
||||
__half *params_cast_h = NULL;
|
||||
__half *grads_cast_h = NULL;
|
||||
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
}
|
||||
__half *params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
__half *grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
__half *momentum_cast_h = reinterpret_cast<__half *>(_exp_avg);
|
||||
__half *variance_cast_h = reinterpret_cast<__half *>(_exp_avg_sq);
|
||||
|
||||
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
||||
AVX_Data betta1_4;
|
||||
|
@ -77,7 +73,6 @@ void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
|||
if (_weight_decay > 0)
|
||||
weight_decay_4.data =
|
||||
(_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH);
|
||||
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
|
@ -87,28 +82,23 @@ void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
|||
#pragma omp parallel for
|
||||
for (size_t i = t; i < offset; i += SIMD_WIDTH) {
|
||||
AVX_Data grad_4;
|
||||
if (grad_half_precision) {
|
||||
grad_4.data = SIMD_LOAD_HALF(grads_cast_h + i);
|
||||
} else {
|
||||
grad_4.data = SIMD_LOAD(grads + i);
|
||||
}
|
||||
this->simd_load(grad_half_precision, grads + i, grads_cast_h + i, grad_4);
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4.data = SIMD_DIV(grad_4.data, loss_scale_vec.data);
|
||||
}
|
||||
AVX_Data momentum_4;
|
||||
momentum_4.data = SIMD_LOAD(_exp_avg + i);
|
||||
this->simd_load(momentum_half_precision, _exp_avg + i,
|
||||
momentum_cast_h + i, momentum_4);
|
||||
|
||||
AVX_Data variance_4;
|
||||
variance_4.data = SIMD_LOAD(_exp_avg_sq + i);
|
||||
this->simd_load(variance_half_precision, _exp_avg_sq + i,
|
||||
variance_cast_h + i, variance_4);
|
||||
|
||||
AVX_Data param_4;
|
||||
if (param_half_precision) {
|
||||
param_4.data = SIMD_LOAD_HALF(params_cast_h + i);
|
||||
} else {
|
||||
param_4.data = SIMD_LOAD(_params + i);
|
||||
}
|
||||
this->simd_load(param_half_precision, _params + i, params_cast_h + i,
|
||||
param_4);
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4.data = SIMD_FMA(param_4.data, weight_decay_4.data, grad_4.data);
|
||||
|
@ -130,13 +120,12 @@ void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
|||
}
|
||||
param_4.data = SIMD_FMA(grad_4.data, step_size_4.data, param_4.data);
|
||||
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float *)(params_cast_h + i), param_4.data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i, param_4.data);
|
||||
}
|
||||
SIMD_STORE(_exp_avg + i, momentum_4.data);
|
||||
SIMD_STORE(_exp_avg_sq + i, variance_4.data);
|
||||
this->simd_store(param_half_precision, _params + i, params_cast_h + i,
|
||||
param_4);
|
||||
this->simd_store(momentum_half_precision, _exp_avg + i,
|
||||
momentum_cast_h + i, momentum_4);
|
||||
this->simd_store(variance_half_precision, _exp_avg_sq + i,
|
||||
variance_cast_h + i, variance_4);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -154,8 +143,10 @@ void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
|||
}
|
||||
float param =
|
||||
param_half_precision ? (float)params_cast_h[k] : _params[k];
|
||||
float momentum = _exp_avg[k];
|
||||
float variance = _exp_avg_sq[k];
|
||||
float momentum =
|
||||
momentum_half_precision ? (float)momentum_cast_h[k] : _exp_avg[k];
|
||||
float variance = variance_half_precision ? (float)variance_cast_h[k]
|
||||
: _exp_avg_sq[k];
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad = param * _weight_decay + grad;
|
||||
}
|
||||
|
@ -178,8 +169,14 @@ void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
|||
params_cast_h[k] = (__half)param;
|
||||
else
|
||||
_params[k] = param;
|
||||
_exp_avg[k] = momentum;
|
||||
_exp_avg_sq[k] = variance;
|
||||
if (momentum_half_precision)
|
||||
momentum_cast_h[k] = (__half)(momentum);
|
||||
else
|
||||
_exp_avg[k] = momentum;
|
||||
if (variance_half_precision)
|
||||
variance_cast_h[k] = (__half)(variance);
|
||||
else
|
||||
_exp_avg_sq[k] = variance;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -188,17 +185,14 @@ void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
|||
void Adam_Optimizer::Step_4(float *_params, float *grads, float *_exp_avg,
|
||||
float *_exp_avg_sq, size_t _param_size,
|
||||
bool param_half_precision, bool grad_half_precision,
|
||||
float loss_scale) {
|
||||
size_t rounded_size = 0;
|
||||
bool momentum_half_precision,
|
||||
bool variance_half_precision, float loss_scale) {
|
||||
size_t rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 4);
|
||||
|
||||
__half *params_cast_h = NULL;
|
||||
__half *grads_cast_h = NULL;
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
}
|
||||
__half *params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
__half *grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
__half *momentum_cast_h = reinterpret_cast<__half *>(_exp_avg);
|
||||
__half *variance_cast_h = reinterpret_cast<__half *>(_exp_avg_sq);
|
||||
|
||||
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
||||
AVX_Data betta1_4;
|
||||
|
@ -228,7 +222,6 @@ void Adam_Optimizer::Step_4(float *_params, float *grads, float *_exp_avg,
|
|||
if (_weight_decay > 0)
|
||||
weight_decay_4.data =
|
||||
(_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 4);
|
||||
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
|
@ -243,26 +236,21 @@ void Adam_Optimizer::Step_4(float *_params, float *grads, float *_exp_avg,
|
|||
AVX_Data param_4[4];
|
||||
#pragma unroll 4
|
||||
for (int j = 0; j < 4; j++) {
|
||||
if (grad_half_precision) {
|
||||
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
||||
}
|
||||
this->simd_load(grad_half_precision, grads + i + SIMD_WIDTH * j,
|
||||
grads_cast_h + i + SIMD_WIDTH * j, grad_4[j]);
|
||||
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
||||
}
|
||||
|
||||
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
||||
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
||||
|
||||
if (param_half_precision) {
|
||||
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
||||
}
|
||||
this->simd_load(momentum_half_precision, _exp_avg + i + SIMD_WIDTH * j,
|
||||
momentum_cast_h + i + SIMD_WIDTH * j, momentum_4[j]);
|
||||
this->simd_load(variance_half_precision,
|
||||
_exp_avg_sq + i + SIMD_WIDTH * j,
|
||||
variance_cast_h + i + SIMD_WIDTH * j, variance_4[j]);
|
||||
this->simd_load(param_half_precision, _params + i + SIMD_WIDTH * j,
|
||||
params_cast_h + i + SIMD_WIDTH * j, param_4[j]);
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4[j].data =
|
||||
|
@ -285,14 +273,13 @@ void Adam_Optimizer::Step_4(float *_params, float *grads, float *_exp_avg,
|
|||
}
|
||||
param_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float *)(params_cast_h + i + SIMD_WIDTH * j),
|
||||
param_4[j].data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
||||
}
|
||||
SIMD_STORE(_exp_avg + i + SIMD_WIDTH * j, momentum_4[j].data);
|
||||
SIMD_STORE(_exp_avg_sq + i + SIMD_WIDTH * j, variance_4[j].data);
|
||||
this->simd_store(param_half_precision, _params + i + SIMD_WIDTH * j,
|
||||
params_cast_h + i + SIMD_WIDTH * j, param_4[j]);
|
||||
this->simd_store(momentum_half_precision, _exp_avg + i + SIMD_WIDTH * j,
|
||||
momentum_cast_h + i + SIMD_WIDTH * j, momentum_4[j]);
|
||||
this->simd_store(variance_half_precision,
|
||||
_exp_avg_sq + i + SIMD_WIDTH * j,
|
||||
variance_cast_h + i + SIMD_WIDTH * j, variance_4[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -302,24 +289,26 @@ void Adam_Optimizer::Step_4(float *_params, float *grads, float *_exp_avg,
|
|||
: _params + rounded_size),
|
||||
(grad_half_precision ? (float *)(grads_cast_h + rounded_size)
|
||||
: grads + rounded_size),
|
||||
(_exp_avg + rounded_size), (_exp_avg_sq + rounded_size),
|
||||
(momentum_half_precision ? (float *)(momentum_cast_h + rounded_size)
|
||||
: _exp_avg + rounded_size),
|
||||
(variance_half_precision ? (float *)(variance_cast_h + rounded_size)
|
||||
: _exp_avg_sq + rounded_size),
|
||||
(_param_size - rounded_size), param_half_precision,
|
||||
grad_half_precision, loss_scale);
|
||||
grad_half_precision, momentum_half_precision,
|
||||
variance_half_precision, loss_scale);
|
||||
}
|
||||
|
||||
void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
||||
float *_exp_avg_sq, size_t _param_size,
|
||||
bool param_half_precision, bool grad_half_precision,
|
||||
float loss_scale) {
|
||||
size_t rounded_size = 0;
|
||||
__half *params_cast_h = NULL;
|
||||
__half *grads_cast_h = NULL;
|
||||
if (param_half_precision) {
|
||||
params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
}
|
||||
if (grad_half_precision) {
|
||||
grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
}
|
||||
bool momentum_half_precision,
|
||||
bool variance_half_precision, float loss_scale) {
|
||||
size_t rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 8);
|
||||
__half *params_cast_h = reinterpret_cast<__half *>(_params);
|
||||
__half *grads_cast_h = reinterpret_cast<__half *>(grads);
|
||||
__half *momentum_cast_h = reinterpret_cast<__half *>(_exp_avg);
|
||||
__half *variance_cast_h = reinterpret_cast<__half *>(_exp_avg_sq);
|
||||
|
||||
#if defined(__AVX512__) or defined(__AVX256__) or defined(__AVX2__)
|
||||
AVX_Data betta1_4;
|
||||
betta1_4.data = SIMD_SET(_betta1);
|
||||
|
@ -348,7 +337,6 @@ void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
|||
if (_weight_decay > 0)
|
||||
weight_decay_4.data =
|
||||
(_adamw_mode ? SIMD_SET(w_decay) : SIMD_SET(_weight_decay));
|
||||
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 8);
|
||||
|
||||
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||||
size_t copy_size = TILE;
|
||||
|
@ -363,26 +351,21 @@ void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
|||
AVX_Data param_4[8];
|
||||
#pragma unroll 8
|
||||
for (int j = 0; j < 8; j++) {
|
||||
if (grad_half_precision) {
|
||||
grad_4[j].data = SIMD_LOAD_HALF(grads_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
grad_4[j].data = SIMD_LOAD(grads + i + SIMD_WIDTH * j);
|
||||
}
|
||||
this->simd_load(grad_half_precision, grads + i + SIMD_WIDTH * j,
|
||||
grads_cast_h + i + SIMD_WIDTH * j, grad_4[j]);
|
||||
|
||||
if (loss_scale > 0) {
|
||||
AVX_Data loss_scale_vec;
|
||||
loss_scale_vec.data = SIMD_SET(loss_scale);
|
||||
grad_4[j].data = SIMD_DIV(grad_4[j].data, loss_scale_vec.data);
|
||||
}
|
||||
|
||||
momentum_4[j].data = SIMD_LOAD(_exp_avg + i + SIMD_WIDTH * j);
|
||||
variance_4[j].data = SIMD_LOAD(_exp_avg_sq + i + SIMD_WIDTH * j);
|
||||
|
||||
if (param_half_precision) {
|
||||
param_4[j].data = SIMD_LOAD_HALF(params_cast_h + i + SIMD_WIDTH * j);
|
||||
} else {
|
||||
param_4[j].data = SIMD_LOAD(_params + i + SIMD_WIDTH * j);
|
||||
}
|
||||
this->simd_load(momentum_half_precision, _exp_avg + i + SIMD_WIDTH * j,
|
||||
momentum_cast_h + i + SIMD_WIDTH * j, momentum_4[j]);
|
||||
this->simd_load(variance_half_precision,
|
||||
_exp_avg_sq + i + SIMD_WIDTH * j,
|
||||
variance_cast_h + i + SIMD_WIDTH * j, variance_4[j]);
|
||||
this->simd_load(param_half_precision, _params + i + SIMD_WIDTH * j,
|
||||
params_cast_h + i + SIMD_WIDTH * j, param_4[j]);
|
||||
|
||||
if (_weight_decay > 0 && !_adamw_mode) {
|
||||
grad_4[j].data =
|
||||
|
@ -405,15 +388,13 @@ void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
|||
param_4[j].data =
|
||||
SIMD_FMA(grad_4[j].data, step_size_4.data, param_4[j].data);
|
||||
|
||||
if (param_half_precision) {
|
||||
SIMD_STORE_HALF((float *)(params_cast_h + i + SIMD_WIDTH * j),
|
||||
param_4[j].data);
|
||||
} else {
|
||||
SIMD_STORE(_params + i + SIMD_WIDTH * j, param_4[j].data);
|
||||
}
|
||||
|
||||
SIMD_STORE(_exp_avg + i + (SIMD_WIDTH * j), momentum_4[j].data);
|
||||
SIMD_STORE(_exp_avg_sq + i + (SIMD_WIDTH * j), variance_4[j].data);
|
||||
this->simd_store(param_half_precision, _params + i + SIMD_WIDTH * j,
|
||||
params_cast_h + i + SIMD_WIDTH * j, param_4[j]);
|
||||
this->simd_store(momentum_half_precision, _exp_avg + i + SIMD_WIDTH * j,
|
||||
momentum_cast_h + i + SIMD_WIDTH * j, momentum_4[j]);
|
||||
this->simd_store(variance_half_precision,
|
||||
_exp_avg_sq + i + SIMD_WIDTH * j,
|
||||
variance_cast_h + i + SIMD_WIDTH * j, variance_4[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -423,9 +404,13 @@ void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
|||
: _params + rounded_size),
|
||||
(grad_half_precision ? (float *)(grads_cast_h + rounded_size)
|
||||
: grads + rounded_size),
|
||||
(_exp_avg + rounded_size), (_exp_avg_sq + rounded_size),
|
||||
(momentum_half_precision ? (float *)(momentum_cast_h + rounded_size)
|
||||
: _exp_avg + rounded_size),
|
||||
(variance_half_precision ? (float *)(variance_cast_h + rounded_size)
|
||||
: _exp_avg_sq + rounded_size),
|
||||
(_param_size - rounded_size), param_half_precision,
|
||||
grad_half_precision, loss_scale);
|
||||
grad_half_precision, momentum_half_precision,
|
||||
variance_half_precision, loss_scale);
|
||||
}
|
||||
|
||||
void Adam_Optimizer::step(size_t step, float lr, float beta1, float beta2,
|
||||
|
@ -447,7 +432,9 @@ void Adam_Optimizer::step(size_t step, float lr, float beta1, float beta2,
|
|||
this->update_state(lr, epsilon, weight_decay, bias_correction);
|
||||
this->Step_8(params_ptr, grads_ptr, exp_avg_ptr, exp_avg_sq_ptr,
|
||||
params_c.numel(), (params.options().dtype() == at::kHalf),
|
||||
(grads.options().dtype() == at::kHalf), loss_scale);
|
||||
(grads.options().dtype() == at::kHalf),
|
||||
(exp_avg.options().dtype() == at::kHalf),
|
||||
(exp_avg_sq.options().dtype() == at::kHalf), loss_scale);
|
||||
}
|
||||
|
||||
namespace py = pybind11;
|
||||
|
|
|
@ -50,9 +50,9 @@ SOFTWARE
|
|||
#define SIMD_DIV(x, y) _mm512_div_ps(x, y)
|
||||
#define SIMD_LOAD_HALF(x) \
|
||||
_mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
|
||||
#define SIMD_STORE_HALF(x, d) \
|
||||
_mm256_store_ps( \
|
||||
x, _mm256_castsi256_ps(_mm512_cvtps_ph(d, _MM_FROUND_TO_NEAREST_INT)))
|
||||
#define SIMD_STORE_HALF(x, d) \
|
||||
_mm256_storeu_ps((float *)(x), _mm256_castsi256_ps(_mm512_cvtps_ph( \
|
||||
d, _MM_FROUND_TO_NEAREST_INT)))
|
||||
|
||||
#elif defined(__AVX256__) or defined(__AVX2__)
|
||||
#define SIMD_WIDTH 8
|
||||
|
@ -66,9 +66,9 @@ SOFTWARE
|
|||
#define SIMD_SQRT(x) _mm256_sqrt_ps(x)
|
||||
#define SIMD_DIV(x, y) _mm256_div_ps(x, y)
|
||||
#define SIMD_LOAD_HALF(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
|
||||
#define SIMD_STORE_HALF(x, d) \
|
||||
_mm_store_ps( \
|
||||
x, _mm_castsi128_ps(_mm256_cvtps_ph(d, _MM_FROUND_TO_NEAREST_INT)))
|
||||
#define SIMD_STORE_HALF(x, d) \
|
||||
_mm_storeu_ps((float *)(x), _mm_castsi128_ps(_mm256_cvtps_ph( \
|
||||
d, _MM_FROUND_TO_NEAREST_INT)))
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -83,11 +83,12 @@ union AVX_Data {
|
|||
|
||||
#endif
|
||||
|
||||
#define STEP(SPAN) \
|
||||
void Step_##SPAN(float *_params, float *grads, float *_exp_avg, \
|
||||
float *_exp_avg_sq, size_t _param_size, \
|
||||
bool param_half_precision = false, \
|
||||
bool grad_half_precision = false, float loss_scale = -1);
|
||||
#define STEP(SPAN) \
|
||||
void Step_##SPAN( \
|
||||
float *_params, float *grads, float *_exp_avg, float *_exp_avg_sq, \
|
||||
size_t _param_size, bool param_half_precision = false, \
|
||||
bool grad_half_precision = false, bool momentum_half_precision = false, \
|
||||
bool variance_half_precision = false, float loss_scale = -1);
|
||||
|
||||
class Adam_Optimizer {
|
||||
public:
|
||||
|
@ -141,6 +142,24 @@ class Adam_Optimizer {
|
|||
}
|
||||
}
|
||||
|
||||
inline void simd_load(bool is_half, float *ptr, __half *h_ptr,
|
||||
AVX_Data &data) {
|
||||
if (is_half) {
|
||||
data.data = SIMD_LOAD_HALF(h_ptr);
|
||||
} else {
|
||||
data.data = SIMD_LOAD(ptr);
|
||||
}
|
||||
}
|
||||
|
||||
inline void simd_store(bool is_half, float *ptr, __half *h_ptr,
|
||||
AVX_Data &data) {
|
||||
if (is_half) {
|
||||
SIMD_STORE_HALF(h_ptr, data.data);
|
||||
} else {
|
||||
SIMD_STORE(ptr, data.data);
|
||||
}
|
||||
}
|
||||
|
||||
void step(size_t step, float lr, float beta1, float beta2, float epsilon,
|
||||
float weight_decay, bool bias_correction, torch::Tensor ¶ms,
|
||||
torch::Tensor &grads, torch::Tensor &exp_avg,
|
||||
|
|
|
@ -146,8 +146,7 @@ class CPUAdam(NVMeOptimizer):
|
|||
assert state["exp_avg"].device.type == "cpu", "exp_avg should stay on cpu"
|
||||
assert state["exp_avg_sq"].device.type == "cpu", "exp_avg should stay on cpu"
|
||||
self._pre_update(p, "exp_avg", "exp_avg_sq")
|
||||
# FIXME(ver217): CPU adam kernel only supports fp32 states now
|
||||
if p.grad.dtype is torch.bfloat16 or p.dtype is not torch.float:
|
||||
if p.grad.dtype is torch.bfloat16:
|
||||
# cpu adam kernel does not support bf16 now
|
||||
bias_correction1 = 1 - beta1 ** state["step"]
|
||||
bias_correction2 = 1 - beta2 ** state["step"]
|
||||
|
|
|
@ -122,8 +122,7 @@ class HybridAdam(CPUAdam):
|
|||
assert state["exp_avg"].device.type == "cpu", "exp_avg should stay on cpu"
|
||||
assert state["exp_avg_sq"].device.type == "cpu", "exp_avg should stay on cpu"
|
||||
self._pre_update(p, "exp_avg", "exp_avg_sq")
|
||||
# FIXME(ver217): CPU adam kernel only supports fp32 states now
|
||||
if p.grad.dtype is torch.bfloat16 or p.dtype is not torch.float:
|
||||
if p.grad.dtype is torch.bfloat16:
|
||||
# cpu adam kernel does not support bf16 now
|
||||
bias_correction1 = 1 - beta1 ** state["step"]
|
||||
bias_correction2 = 1 - beta2 ** state["step"]
|
||||
|
|
|
@ -13,9 +13,7 @@ from colossalai.utils import get_current_device, multi_tensor_applier
|
|||
_FUSED_ALLOWED_P_G_TYPES = [
|
||||
(torch.float, torch.half),
|
||||
(torch.float, torch.float),
|
||||
(torch.half, torch.float),
|
||||
(torch.half, torch.half),
|
||||
(torch.bfloat16, torch.float),
|
||||
(torch.float, torch.bfloat16),
|
||||
(torch.bfloat16, torch.bfloat16),
|
||||
]
|
||||
|
@ -23,7 +21,6 @@ _FUSED_ALLOWED_P_G_TYPES = [
|
|||
_CPU_ALLOWED_P_G_TYPES = [
|
||||
(torch.float, torch.half),
|
||||
(torch.float, torch.float),
|
||||
(torch.half, torch.float),
|
||||
(torch.half, torch.half),
|
||||
]
|
||||
|
||||
|
@ -138,8 +135,8 @@ def check_adam_kernel(
|
|||
master_exp_avg_sq = torch.zeros_like(master_p)
|
||||
p = master_p.clone().to(p_dtype)
|
||||
g = master_g.clone().to(g_dtype)
|
||||
exp_avg = master_exp_avg.clone()
|
||||
exp_avg_sq = master_exp_avg_sq.clone()
|
||||
exp_avg = master_exp_avg.clone().to(p_dtype)
|
||||
exp_avg_sq = master_exp_avg_sq.clone().to(p_dtype)
|
||||
|
||||
for step in range(1, 1 + n_steps):
|
||||
torch_adam.update(step, master_p, master_g, master_exp_avg, master_exp_avg_sq)
|
||||
|
|
|
@ -21,8 +21,6 @@ _ALLOWED_P_G_TYPES = [
|
|||
(torch.float, torch.float), # pure fp32
|
||||
(torch.float, torch.half), # fp16 amp
|
||||
(torch.float, torch.bfloat16), # bfloat16 amp
|
||||
# (torch.half, torch.half), # FIXME(ver217): cpu adam kernel does not support pure fp16
|
||||
# (torch.bfloat16, torch.bfloat16), # FIXME(ver217): cpu adam kernel does not support pure bfloat16
|
||||
]
|
||||
|
||||
N_STEPS = 3
|
||||
|
|
|
@ -52,7 +52,8 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
|
|||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", ["gpt2"])
|
||||
def exam_grad_clipping(placement_config, model_name: str):
|
||||
@parameterize("master_weights", [True, False])
|
||||
def exam_grad_clipping(placement_config, model_name: str, master_weights: bool):
|
||||
set_seed(1912)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
@ -82,6 +83,7 @@ def exam_grad_clipping(placement_config, model_name: str):
|
|||
chunk_config_dict=config_dict,
|
||||
chunk_init_device=init_device,
|
||||
pin_memory=True,
|
||||
master_weights=master_weights,
|
||||
**placement_config,
|
||||
)
|
||||
|
||||
|
@ -103,7 +105,10 @@ def exam_grad_clipping(placement_config, model_name: str):
|
|||
|
||||
torch_loss = run_fwd_bwd(torch_model, data, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, data, label, criterion, zero_optim)
|
||||
assert_close(torch_loss, loss)
|
||||
|
||||
# as no master weights leads to error accumulation, we don't check the loss
|
||||
if master_weights:
|
||||
assert_close(torch_loss, loss)
|
||||
|
||||
import apex.amp as apex_amp
|
||||
|
||||
|
@ -111,7 +116,8 @@ def exam_grad_clipping(placement_config, model_name: str):
|
|||
torch_optim.step()
|
||||
zero_optim.step()
|
||||
|
||||
check_param(model, torch_model)
|
||||
if master_weights:
|
||||
check_param(model, torch_model)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
|
|
|
@ -70,12 +70,14 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
|
|||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
@parameterize("model_name", TEST_MODELS)
|
||||
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
|
||||
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype):
|
||||
@parameterize("master_weights", [True, False])
|
||||
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype, master_weights: bool):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||
|
||||
torch_model = model_builder().cuda()
|
||||
# apex no master weights leads to nan, so we don't use it
|
||||
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=128)
|
||||
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
|
@ -90,7 +92,9 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
|||
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
||||
config_dict[world_size]["chunk_size"] = 5000
|
||||
config_dict[world_size]["keep_gathered"] = False
|
||||
model = GeminiDDP(model, config_dict, **placement_config, mixed_precision=mixed_precision)
|
||||
model = GeminiDDP(
|
||||
model, config_dict, **placement_config, mixed_precision=mixed_precision, master_weights=master_weights
|
||||
)
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128)
|
||||
|
@ -109,12 +113,15 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
|
|||
|
||||
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
||||
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol)
|
||||
# as no master weights leads to error accumulation, we don't check the loss
|
||||
if master_weights:
|
||||
assert_close(torch_loss, loss, rtol=rtol, atol=atol)
|
||||
|
||||
zero_optim.step()
|
||||
torch_optim.step()
|
||||
|
||||
check_param(model, torch_model, mixed_precision)
|
||||
if master_weights:
|
||||
check_param(model, torch_model, mixed_precision)
|
||||
|
||||
|
||||
@parameterize("placement_config", PLACEMENT_CONFIGS)
|
||||
|
|
Loading…
Reference in New Issue