mirror of https://github.com/hpcaitech/ColossalAI
[Gemini] polish runtime tracer tests (#2077)
parent
677e1e20d4
commit
4f21c9e8d9
|
@ -10,17 +10,6 @@ from tests.components_to_test import run_fwd_bwd
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
|
|
||||||
|
|
||||||
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False, dtype=torch.half):
|
|
||||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
||||||
if criterion:
|
|
||||||
y = model(data)
|
|
||||||
loss = criterion(y, label)
|
|
||||||
else:
|
|
||||||
loss = model(data, label)
|
|
||||||
loss = loss.to(dtype)
|
|
||||||
model.backward(loss)
|
|
||||||
|
|
||||||
|
|
||||||
def test_runtime_mem_tracer():
|
def test_runtime_mem_tracer():
|
||||||
test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model', 'albert']
|
test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model', 'albert']
|
||||||
|
|
||||||
|
@ -28,7 +17,7 @@ def test_runtime_mem_tracer():
|
||||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||||
|
|
||||||
with ColoInitContext(device=torch.device('cpu')):
|
with ColoInitContext(device='cpu'):
|
||||||
model = model_builder(checkpoint=False)
|
model = model_builder(checkpoint=False)
|
||||||
|
|
||||||
model_bk = deepcopy(model)
|
model_bk = deepcopy(model)
|
||||||
|
@ -40,7 +29,7 @@ def test_runtime_mem_tracer():
|
||||||
data = data.cuda()
|
data = data.cuda()
|
||||||
label = label.cuda()
|
label = label.cuda()
|
||||||
|
|
||||||
run_fwd_bwd(runtime_mem_tracer, data, label, criterion, False)
|
run_fwd_bwd(runtime_mem_tracer, data, label, criterion, optimizer=runtime_mem_tracer)
|
||||||
|
|
||||||
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
|
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
|
||||||
torch.allclose(p1.to(torch.half), p2)
|
torch.allclose(p1.to(torch.half), p2)
|
||||||
|
|
Loading…
Reference in New Issue