mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] gpt2 autoparallel examples (#2267)
* [autoparallel] gpt2 autoparallel examples * polish code * polish codepull/2270/head
parent
8b045b3c1f
commit
4b29112ab2
@ -0,0 +1,44 @@
|
||||
# Auto-Parallelism with GPT2
|
||||
|
||||
## Requirements
|
||||
|
||||
Before you can launch training, you need to install the following requirements.
|
||||
|
||||
### Install PyTorch
|
||||
|
||||
```bash
|
||||
#conda
|
||||
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
|
||||
#pip
|
||||
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
```
|
||||
|
||||
### Install [Colossal-AI v0.1.12](https://colossalai.org/download/) From Official Website
|
||||
|
||||
```bash
|
||||
pip install colossalai==0.1.12+torch1.12cu11.3 -f https://release.colossalai.org
|
||||
```
|
||||
|
||||
### Install transformers
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
### Install pulp and coin-or-cbc
|
||||
|
||||
```bash
|
||||
pip install pulp
|
||||
conda install -c conda-forge coin-or-cbc
|
||||
```
|
||||
|
||||
## Dataset
|
||||
|
||||
For simplicity, the input data is randonly generated here.
|
||||
|
||||
## Training
|
||||
|
||||
```bash
|
||||
#Run the auto parallel resnet example with 4 GPUs with a dummy dataset.
|
||||
colossalai run --nproc_per_node 4 auto_parallel_with_gpt.py
|
||||
```
|
@ -0,0 +1,109 @@
|
||||
from functools import partial
|
||||
from time import time
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import transformers
|
||||
from gpt_modules import GPT2LMHeadModel, GPTLMLoss
|
||||
from torch.fx import GraphModule
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.initialize import autoparallelize, initialize_model
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.initialize import launch_from_torch
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
|
||||
BATCH_SIZE = 8
|
||||
SEQ_LENGTH = 128
|
||||
HIDDEN_DIM = 3072
|
||||
NUM_HEADS = 16
|
||||
NUM_LAYERS = 1
|
||||
VOCAB_SIZE = 50257
|
||||
NUM_STEPS = 10
|
||||
FP16 = False
|
||||
|
||||
|
||||
def get_cpu_mem():
|
||||
return psutil.Process().memory_info().rss / 1024**2
|
||||
|
||||
|
||||
def get_gpu_mem():
|
||||
return torch.cuda.memory_allocated() / 1024**2
|
||||
|
||||
|
||||
def get_mem_info(prefix=''):
|
||||
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
|
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time):
|
||||
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
|
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) / 4
|
||||
|
||||
|
||||
# Randomly Generated Data
|
||||
def get_data(batch_size, seq_len, vocab_size):
|
||||
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
return input_ids, attention_mask
|
||||
|
||||
|
||||
def main():
|
||||
disable_existing_loggers()
|
||||
launch_from_torch(config={})
|
||||
logger = get_dist_logger()
|
||||
config = transformers.GPT2Config(n_position=SEQ_LENGTH, n_layer=NUM_LAYERS, n_head=NUM_HEADS, n_embd=HIDDEN_DIM)
|
||||
if FP16:
|
||||
model = GPT2LMHeadModel(config=config).half().to('cuda')
|
||||
else:
|
||||
model = GPT2LMHeadModel(config=config).to('cuda')
|
||||
global_numel = sum([p.numel() for p in model.parameters()])
|
||||
|
||||
meta_input_sample = {
|
||||
'input_ids': torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64).to('meta'),
|
||||
'attention_mask': torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64).to('meta'),
|
||||
}
|
||||
|
||||
# Both device mesh initialization and model initialization will be integrated into autoparallelize
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# Enable auto-parallel
|
||||
gm, solution = initialize_model(model, meta_input_sample, device_mesh, return_solution=True)
|
||||
|
||||
# print solution on rank 0
|
||||
if gpc.get_global_rank() == 0:
|
||||
for node_strategy in solution:
|
||||
print(node_strategy)
|
||||
|
||||
# build criterion
|
||||
criterion = GPTLMLoss()
|
||||
|
||||
optimizer = torch.optim.Adam(gm.parameters(), lr=0.01)
|
||||
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
|
||||
get_tflops_func = partial(get_tflops, global_numel, BATCH_SIZE, SEQ_LENGTH)
|
||||
torch.cuda.synchronize()
|
||||
model.train()
|
||||
|
||||
for n in range(10):
|
||||
# we just use randomly generated data here
|
||||
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LENGTH, VOCAB_SIZE)
|
||||
optimizer.zero_grad()
|
||||
start = time()
|
||||
outputs = gm(input_ids, attn_mask)
|
||||
loss = criterion(outputs, input_ids)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
torch.cuda.synchronize()
|
||||
step_time = time() - start
|
||||
logger.info(
|
||||
f'[{n+1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}',
|
||||
ranks=[0])
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,253 @@
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.models.gpt2.modeling_gpt2 import BaseModelOutputWithPastAndCrossAttentions, GPT2PreTrainedModel
|
||||
from transformers.pytorch_utils import Conv1D
|
||||
|
||||
|
||||
class GPT2MLP(nn.Module):
|
||||
|
||||
def __init__(self, intermediate_size, config):
|
||||
super().__init__()
|
||||
embed_dim = config.hidden_size
|
||||
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
||||
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
||||
self.act = ACT2FN[config.activation_function]
|
||||
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||
|
||||
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
||||
hidden_states = self.c_fc(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.c_proj(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# The reason Why we don't import GPT2Attention from transformers directly is that:
|
||||
# 1. The tracer will not work correctly when we feed meta_args and concrete_args at same time,
|
||||
# so we have to build the customized GPT2Attention class and remove the conditional branch manually.
|
||||
# 2. The order of split and view op has been changed in the customized GPT2Attention class, the new
|
||||
# order is same as megatron-lm gpt model.
|
||||
class GPT2Attention(nn.Module):
|
||||
|
||||
def __init__(self, config, layer_idx=None):
|
||||
super().__init__()
|
||||
|
||||
max_positions = config.max_position_embeddings
|
||||
self.register_buffer(
|
||||
"bias",
|
||||
torch.tril(torch.ones((max_positions, max_positions),
|
||||
dtype=torch.uint8)).view(1, 1, max_positions, max_positions),
|
||||
)
|
||||
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
||||
|
||||
self.embed_dim = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.embed_dim // self.num_heads
|
||||
self.split_size = self.embed_dim
|
||||
self.scale_attn_weights = config.scale_attn_weights
|
||||
|
||||
# Layer-wise attention scaling, reordering, and upcasting
|
||||
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
||||
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
||||
|
||||
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
||||
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
||||
|
||||
self.pruned_heads = set()
|
||||
|
||||
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
||||
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
||||
|
||||
if self.scale_attn_weights:
|
||||
attn_weights = attn_weights / (value.size(-1)**0.5)
|
||||
|
||||
# Layer-wise attention scaling
|
||||
if self.scale_attn_by_inverse_layer_idx:
|
||||
attn_weights = attn_weights / float(self.layer_idx + 1)
|
||||
|
||||
# if only "normal" attention layer implements causal mask
|
||||
query_length, key_length = query.size(-2), key.size(-2)
|
||||
causal_mask = self.bias[:, :, key_length - query_length:key_length, :key_length].to(torch.bool)
|
||||
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
|
||||
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
attn_weights = attn_weights.type(value.dtype)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attn_weights = attn_weights * head_mask
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
|
||||
return attn_output, attn_weights
|
||||
|
||||
def _split_heads(self, tensor, num_heads, attn_head_size):
|
||||
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
||||
tensor = tensor.view(new_shape)
|
||||
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
||||
|
||||
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
||||
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
||||
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
||||
return tensor.view(new_shape)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
||||
|
||||
qkv = self.c_attn(hidden_states)
|
||||
query, key, value = self._split_heads(qkv, self.num_heads, 3 * self.head_dim).split(self.head_dim, dim=3)
|
||||
present = (key, value)
|
||||
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
||||
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
||||
attn_output = self.c_proj(attn_output)
|
||||
return attn_output
|
||||
|
||||
|
||||
class GPT2Block(nn.Module):
|
||||
|
||||
def __init__(self, config, layer_idx=None):
|
||||
super().__init__()
|
||||
hidden_size = config.hidden_size
|
||||
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
||||
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.attn = GPT2Attention(config, layer_idx=layer_idx)
|
||||
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mlp = GPT2MLP(inner_dim, config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln_1(hidden_states)
|
||||
attn_outputs = self.attn(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
)
|
||||
# residual connection
|
||||
hidden_states = attn_outputs + residual
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln_2(hidden_states)
|
||||
feed_forward_hidden_states = self.mlp(hidden_states)
|
||||
# residual connection
|
||||
hidden_states = residual + feed_forward_hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPT2Model(GPT2PreTrainedModel):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embed_dim = config.hidden_size
|
||||
|
||||
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
||||
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
||||
|
||||
self.drop = nn.Dropout(config.embd_pdrop)
|
||||
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
||||
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
batch_size = input_ids.shape[0]
|
||||
|
||||
device = input_ids.device
|
||||
|
||||
past_length = 0
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
|
||||
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
||||
|
||||
# GPT2Attention mask.
|
||||
attention_mask = attention_mask.view(batch_size, -1)
|
||||
attention_mask = attention_mask[:, None, None, :]
|
||||
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
attention_mask = (1.0 - attention_mask) * -10000.0
|
||||
|
||||
encoder_attention_mask = None
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# head_mask has shape n_layer x batch x n_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
inputs_embeds = self.wte(input_ids)
|
||||
position_embeds = self.wpe(position_ids)
|
||||
|
||||
hidden_states = inputs_embeds + position_embeds
|
||||
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
outputs = block(hidden_states, attention_mask=attention_mask, head_mask=head_mask[i])
|
||||
hidden_states = outputs
|
||||
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
hidden_states = hidden_states.view(output_shape)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.transformer = GPT2Model(config)
|
||||
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
):
|
||||
transformer_outputs = self.transformer(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
lm_logits = self.lm_head(transformer_outputs)
|
||||
|
||||
return lm_logits
|
||||
|
||||
|
||||
class GPTLMLoss(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, logits, labels):
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
@ -0,0 +1,4 @@
|
||||
colossalai >= 0.1.12
|
||||
torch >= 1.8.1
|
||||
transformers >= 4.231
|
||||
PuLP >= 2.7.0
|
Loading…
Reference in new issue