mirror of https://github.com/hpcaitech/ColossalAI
[tensor]add 1D device mesh (#1492)
parent
b8d0e39eaf
commit
4b03c25f85
|
@ -25,7 +25,13 @@ class DeviceMesh:
|
|||
(default: False)
|
||||
"""
|
||||
|
||||
def __init__(self, physical_mesh_id, mesh_shape, mesh_alpha=None, mesh_beta=None, init_process_group=False):
|
||||
def __init__(self,
|
||||
physical_mesh_id,
|
||||
mesh_shape,
|
||||
mesh_alpha=None,
|
||||
mesh_beta=None,
|
||||
init_process_group=False,
|
||||
need_flatten=True):
|
||||
self.physical_mesh_id = physical_mesh_id
|
||||
self.mesh_shape = mesh_shape
|
||||
self._logical_mesh_id = self.physical_mesh_id.reshape(self.mesh_shape)
|
||||
|
@ -39,8 +45,12 @@ class DeviceMesh:
|
|||
mesh_beta = [1] * len(self.mesh_shape)
|
||||
self.mesh_alpha = tuple(mesh_alpha)
|
||||
self.mesh_beta = tuple(mesh_beta)
|
||||
if init_process_group:
|
||||
self.init_process_group = init_process_group
|
||||
self.need_flatten = need_flatten
|
||||
if self.init_process_group:
|
||||
self.process_groups_dict = self.create_process_groups_for_logical_mesh()
|
||||
if self.need_flatten:
|
||||
self.flatten_device_mesh = self.flatten()
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
|
@ -54,6 +64,19 @@ class DeviceMesh:
|
|||
def logical_mesh_id(self):
|
||||
return self._logical_mesh_id
|
||||
|
||||
def flatten(self):
|
||||
"""
|
||||
Flatten the logical mesh into an effective 1d logical mesh,
|
||||
"""
|
||||
flatten_mesh_shape_size = len(self.mesh_shape)
|
||||
flatten_mesh_shape = [self.num_devices]
|
||||
return DeviceMesh(self.physical_mesh_id,
|
||||
tuple(flatten_mesh_shape),
|
||||
mesh_alpha=[max(self.mesh_alpha)] * (flatten_mesh_shape_size - 1),
|
||||
mesh_beta=[min(self.mesh_beta)] * (flatten_mesh_shape_size - 1),
|
||||
init_process_group=self.init_process_group,
|
||||
need_flatten=False)
|
||||
|
||||
def _global_rank_to_logical_rank_map(self, tensor, index_list):
|
||||
'''
|
||||
This method is a helper function to build convert_map recursively.
|
||||
|
|
|
@ -3,6 +3,7 @@ from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
|||
from colossalai.tensor.utils import all_gather_simulator, all_to_all_simulator, shard_simulator
|
||||
from enum import Enum
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
import torch.distributed as dist
|
||||
import math
|
||||
from functools import reduce
|
||||
|
@ -29,9 +30,9 @@ class CommSpec:
|
|||
Argument:
|
||||
comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec.
|
||||
sharding_spec(ShardingSpec): This is sharding spec of the tensor which will join the communication action.
|
||||
gather_dim(int, optional): The gather_dim of the tensor will be gathered.
|
||||
shard_dim(int, optional): The shard_dim of the tensor will be sharded.
|
||||
logical_process_axis(int, optional): The mesh_dim to implement the communication action.
|
||||
gather_dim(int, Optional): The gather_dim of the tensor will be gathered.
|
||||
shard_dim(int, Optional): The shard_dim of the tensor will be sharded.
|
||||
logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action.
|
||||
'''
|
||||
|
||||
def __init__(self, comm_pattern, sharding_spec, gather_dim=None, shard_dim=None, logical_process_axis=None):
|
||||
|
@ -40,6 +41,11 @@ class CommSpec:
|
|||
self.gather_dim = gather_dim
|
||||
self.shard_dim = shard_dim
|
||||
self.logical_process_axis = logical_process_axis
|
||||
if isinstance(self.logical_process_axis, list):
|
||||
self.device_mesh = self.sharding_spec.device_mesh.flatten_device_mesh
|
||||
self.logical_process_axis = 0
|
||||
else:
|
||||
self.device_mesh = self.sharding_spec.device_mesh
|
||||
|
||||
def __repr__(self):
|
||||
res_list = ["CommSpec:("]
|
||||
|
@ -70,11 +76,11 @@ class CommSpec:
|
|||
'''
|
||||
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
|
||||
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
|
||||
return self.sharding_spec.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
|
||||
return self.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
|
||||
if self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
||||
return self.sharding_spec.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
|
||||
return self.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
|
||||
if self.comm_pattern == CollectiveCommPattern.ALLREDUCE:
|
||||
return self.sharding_spec.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
|
||||
return self.device_mesh.all_reduce_cost(comm_size, self.logical_process_axis)
|
||||
if self.comm_pattern == CollectiveCommPattern.SHARD:
|
||||
return 0
|
||||
raise RuntimeError(f"Could not find a matching CollectiveCommPattern for {self.comm_pattern}.")
|
||||
|
@ -87,15 +93,14 @@ class CommSpec:
|
|||
Argument:
|
||||
tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks.
|
||||
'''
|
||||
device_mesh = self.sharding_spec.device_mesh
|
||||
process_groups_list = device_mesh.process_groups_dict[self.logical_process_axis]
|
||||
process_groups_list = self.device_mesh.process_groups_dict[self.logical_process_axis]
|
||||
|
||||
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
|
||||
for rank_list, process_group in process_groups_list:
|
||||
if dist.get_rank() in rank_list:
|
||||
tensor_list = [
|
||||
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device)
|
||||
for _ in range(self.sharding_spec.device_mesh.mesh_shape[self.logical_process_axis])
|
||||
for _ in range(self.device_mesh.mesh_shape[self.logical_process_axis])
|
||||
]
|
||||
tensor = tensor
|
||||
group = process_group
|
||||
|
|
|
@ -133,13 +133,36 @@ def check_all_reduce(device_mesh, rank):
|
|||
# device_mesh_shape: (2, 2)
|
||||
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
|
||||
|
||||
# CommSpec:CommSpec:(comm_pattern:all_reduce, logical_process_axis:0)
|
||||
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:0)
|
||||
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=0)
|
||||
comm_spec.covert_spec_to_action(tensor_to_comm)
|
||||
|
||||
assert tensor_to_comm.equal(tensor_to_check)
|
||||
|
||||
|
||||
def check_all_reduce_in_flatten_device_mesh(device_mesh, rank):
|
||||
# tensor to comm
|
||||
tensor_to_comm = torch.ones(2, 2).cuda() * rank
|
||||
|
||||
# reduce through logical process axis 0 at flatten device mesh
|
||||
# tensor to check
|
||||
# tensor([[6., 6.],
|
||||
# [6., 6.]])
|
||||
tensor_to_check = torch.tensor([[6, 6], [6, 6]], dtype=tensor_to_comm.dtype).cuda()
|
||||
|
||||
dim_partition_dict = {}
|
||||
# DistSpec:
|
||||
# shard_sequence: R,R
|
||||
# device_mesh_shape: (2, 2)
|
||||
sharding_spec = ShardingSpec(device_mesh, tensor_to_comm.shape, dim_partition_dict=dim_partition_dict)
|
||||
|
||||
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1])
|
||||
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE, sharding_spec, logical_process_axis=[0, 1])
|
||||
comm_spec.covert_spec_to_action(tensor_to_comm)
|
||||
|
||||
assert tensor_to_comm.equal(tensor_to_check)
|
||||
|
||||
|
||||
def check_comm(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
|
@ -162,6 +185,9 @@ def check_comm(rank, world_size, port):
|
|||
|
||||
# test all reduce
|
||||
check_all_reduce(device_mesh, rank)
|
||||
|
||||
# test all reduce in 1D flatten device mesh
|
||||
check_all_reduce_in_flatten_device_mesh(device_mesh, rank)
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
|
|
|
@ -64,7 +64,6 @@ def check_apply(rank, world_size, port):
|
|||
|
||||
tensor_to_comm.sharding_spec = sharding_spec_source
|
||||
shape_consistency_manager.apply(tensor_to_comm, sharding_spec_target)
|
||||
print(tensor_to_comm)
|
||||
assert tensor_to_comm.equal(tensor_to_check)
|
||||
assert str(tensor_to_comm.sharding_spec.sharding_sequence) == str(sharding_spec_target.sharding_sequence)
|
||||
|
||||
|
|
Loading…
Reference in New Issue