[fx] Fix activation codegen dealing with checkpointing first op (#1510)

pull/1511/head
Boyuan Yao 2022-08-27 19:39:21 +08:00 committed by GitHub
parent ac3a453a50
commit 4acc58ee20
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 36 additions and 20 deletions

View File

@ -165,9 +165,12 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
# we need to check if the checkpoint need use_reentrant=False # we need to check if the checkpoint need use_reentrant=False
use_reentrant = True use_reentrant = True
non_leaf_input = 0
for var in input_vars[label]: for var in input_vars[label]:
input_node = [item for item in node_list if item.name == var] input_node = [item for item in node_list if item.name == var]
input_node = input_node[0] input_node = input_node[0]
if input_node.op != "placeholder":
non_leaf_input = 1
for user in input_node.users: for user in input_node.users:
if hasattr(user, "activation_checkpoint"): if hasattr(user, "activation_checkpoint"):
if user.activation_checkpoint == label: if user.activation_checkpoint == label:
@ -179,6 +182,10 @@ def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func,
if "inplace" in user.kwargs: if "inplace" in user.kwargs:
use_reentrant = not user.kwargs["inplace"] use_reentrant = not user.kwargs["inplace"]
# if all the inputs are leaf nodes, we need to set use_reentrant = False
if not non_leaf_input:
use_reentrant = False
# generate checkpoint function call in a new line # generate checkpoint function call in a new line
usage = _gen_ckpt_usage(label, activation_offload, input_vars[label], output_vars[label], use_reentrant) usage = _gen_ckpt_usage(label, activation_offload, input_vars[label], output_vars[label], use_reentrant)
usage += '\n' usage += '\n'

View File

@ -49,16 +49,20 @@ class MyModule(torch.nn.Module):
self.relu = relu() self.relu = relu()
self.linear2 = torch.nn.Linear(4, 4) self.linear2 = torch.nn.Linear(4, 4)
def forward(self, x): def ckpt2(self, x):
return F.relu(x, inplace=True)
def ckpt3(self, x, y):
return self.linear2(x) + self.linear2(y)
def forward(self, x, y):
y1, y2 = checkpoint(self.mlp1, x) y1, y2 = checkpoint(self.mlp1, x)
y3 = checkpoint(self.relu, x) y3 = checkpoint(self.relu, x)
def ckpt2(x): y4 = checkpoint(self.ckpt2, y)
return F.relu(x, inplace=True) y5 = checkpoint(self.ckpt3, y, y4)
y6 = self.linear2(y4)
y4 = checkpoint(ckpt2, x) return y1 + y2 + y3 + y4 + y5 + y6
y4 = self.linear2(y4)
return y1 + y2 + y3 + y4
def _run_act_ckpt_codegen(rank): def _run_act_ckpt_codegen(rank):
@ -67,13 +71,15 @@ def _run_act_ckpt_codegen(rank):
# build model and run forward # build model and run forward
model = MyModule() model = MyModule()
data = torch.rand(4, 4) data1 = torch.rand(4, 4)
data2 = torch.rand(4, 4)
# copy model to cuda # copy model to cuda
model = model.to(device="cuda") model = model.to(device="cuda")
data = data.to(device="cuda") data1 = data1.to(device="cuda")
data2 = data2.to(device="cuda")
non_fx_out = model(data) non_fx_out = model(data1, data2)
# trace the module and replace codegen # trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True) tracer = ColoTracer(trace_act_ckpt=True)
@ -99,12 +105,13 @@ def _run_act_ckpt_codegen(rank):
# assert checkpoint function will be generated and # assert checkpoint function will be generated and
# the offload option is correct # the offload option is correct
code = graph.python_code('self').src code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=True)' in code and \ assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \ 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, x, use_reentrant=False)' in code 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, y, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_3, False, y, relu, use_reentrant=True)' in code
# recompile and verify the outputs are consistent # recompile and verify the outputs are consistent
fx_out = gm(data) fx_out = gm(data1, data2)
assert torch.equal(non_fx_out, fx_out) assert torch.equal(non_fx_out, fx_out)
gpc.destroy() gpc.destroy()
@ -121,13 +128,14 @@ def _run_act_ckpt_python_code_torch11(rank):
# build model and run forward # build model and run forward
model = MyModule() model = MyModule()
data = torch.rand(4, 4) data1 = torch.rand(4, 4)
data2 = torch.rand(4, 4)
# copy model to cuda # copy model to cuda
model = model.to(device="cuda") data1 = data1.to(device="cuda")
data = data.to(device="cuda") data2 = data2.to(device="cuda")
non_fx_out = model(data) non_fx_out = model(data1, data2)
# trace the module and replace codegen # trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True) tracer = ColoTracer(trace_act_ckpt=True)
@ -152,12 +160,13 @@ def _run_act_ckpt_python_code_torch11(rank):
# assert checkpoint function will be generated and # assert checkpoint function will be generated and
# the offload option is correct # the offload option is correct
code = graph.python_code('self').src code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=True)' in code and \ assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \ 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, x, use_reentrant=False)' in code 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, y, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_3, False, y, relu, use_reentrant=True)' in code
# recompile and verify the outputs are consistent # recompile and verify the outputs are consistent
fx_out = gm(data) fx_out = gm(data1, data2)
assert torch.equal(non_fx_out, fx_out) assert torch.equal(non_fx_out, fx_out)
gpc.destroy() gpc.destroy()