[kernel] added jit warmup (#1792)

pull/1828/head
アマデウス 2022-11-08 16:22:23 +08:00 committed by GitHub
parent 76e64cb67c
commit 4268ae017b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 81 additions and 21 deletions

View File

@ -1,5 +1,11 @@
import torch
from colossalai.nn.layer.colossalai_layer import Embedding, Linear
from colossalai.utils import get_current_device
from .bias_dropout_add import bias_dropout_add_fused_train
from .bias_gelu import bias_gelu_impl
JIT_OPTIONS_SET = False
@ -30,3 +36,44 @@ def set_jit_fusion_options():
torch._C._jit_override_can_fuse_on_gpu(True)
JIT_OPTIONS_SET = True
def warmup_jit_fusion(batch_size: int,
hidden_size: int,
seq_length: int = 512,
vocab_size: int = 32768,
dtype: torch.dtype = torch.float32):
""" Compilie JIT functions before the main training steps """
embed = Embedding(vocab_size, hidden_size).to(get_current_device())
linear_1 = Linear(hidden_size, hidden_size * 4, skip_bias_add=True).to(get_current_device())
linear_2 = Linear(hidden_size * 4, hidden_size, skip_bias_add=True).to(get_current_device())
x = torch.randint(vocab_size, (batch_size, seq_length), dtype=torch.long, device=get_current_device())
x = embed(x)
y, y_bias = linear_1(x)
z, z_bias = linear_2(y)
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for bias_grad, input_grad in zip([True, True], [False, True]):
for _ in range(10):
bias = torch.rand_like(y_bias, dtype=dtype, device=get_current_device())
input_ = torch.rand_like(y, dtype=dtype, device=get_current_device())
bias.requires_grad, input_.requires_grad = bias_grad, input_grad
bias_gelu_impl(input_, bias)
# Warmup fused bias+dropout+add
dropout_rate = 0.1
# Warmup JIT fusions with the input grad_enable state of both forward
# prop and recomputation
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
for _ in range(10):
input_ = torch.rand_like(z, dtype=dtype, device=get_current_device())
residual = torch.rand_like(x, dtype=dtype, device=get_current_device())
bias = torch.rand_like(z_bias, dtype=dtype, device=get_current_device())
input_.requires_grad = input_grad
bias.requires_grad = bias_grad
residual.requires_grad = residual_grad
bias_dropout_add_fused_train(input_, bias, residual, dropout_rate)
torch.cuda.empty_cache()

View File

@ -1,6 +1,6 @@
from ._ops import *
from .layer import *
from .loss import *
from .lr_scheduler import *
from .metric import *
from .optimizer import *
from ._ops import *

View File

@ -7,6 +7,9 @@ from typing import Callable, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn.parameter import Parameter
from colossalai.communication import broadcast
from colossalai.context import ParallelMode, seed
from colossalai.core import global_context as gpc
@ -14,18 +17,33 @@ from colossalai.global_variables import tensor_parallel_env as env
from colossalai.kernel import LayerNorm
from colossalai.nn import init as init
from colossalai.registry import LAYERS
from colossalai.utils.checkpointing import (broadcast_state_dict, gather_tensor_parallel_state_dict,
partition_tensor_parallel_state_dict)
from colossalai.utils.checkpointing import (
broadcast_state_dict,
gather_tensor_parallel_state_dict,
partition_tensor_parallel_state_dict,
)
from colossalai.utils.cuda import get_current_device
from torch import Tensor
from torch.nn.parameter import Parameter
from ..vanilla import VanillaPatchEmbedding, VanillaLayerNorm
from ..base_layer import ParallelLayer
from ..colossalai_layer._utils import ColossalaiModule
from ..utils import divide, set_tensor_parallel_attribute_by_partition
from ._utils import (gather_forward_split_backward, get_parallel_input, reduce_grad, reduce_input, set_parallel_input,
split_forward_gather_backward)
from ..vanilla import VanillaLayerNorm, VanillaPatchEmbedding
from ._operation import linear_with_async_comm
from ._utils import (
gather_forward_split_backward,
get_parallel_input,
reduce_grad,
reduce_input,
set_parallel_input,
split_forward_gather_backward,
)
Fast_LN = None
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
Fast_LN = FastLayerNorm
except ImportError:
pass
@LAYERS.register_module
@ -102,19 +120,15 @@ class LayerNorm1D(ColossalaiModule):
]
def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None):
from apex.normalization import FusedLayerNorm
fast_ln_installed = False
try:
from apex.contrib.layer_norm.layer_norm import FastLayerNorm
fast_ln_installed = True
except ImportError:
pass
if fast_ln_installed and normalized_shape in self._fast_ln_supported_sizes:
norm = FastLayerNorm(normalized_shape, eps=eps).to(dtype)
if Fast_LN is not None and normalized_shape in self._fast_ln_supported_sizes:
norm = Fast_LN(normalized_shape, eps=eps).to(dtype)
else:
norm = FusedLayerNorm(normalized_shape, eps=eps).to(dtype)
norm = None
try:
from apex.normalization import FusedLayerNorm
norm = FusedLayerNorm(normalized_shape, eps=eps).to(dtype)
except ImportError:
norm = LayerNorm(normalized_shape, eps=eps).to(dtype)
super().__init__(norm)
def _load_from_state_dict(self, state_dict, prefix, *args):

View File

@ -5,7 +5,6 @@ import torch
from torch import Tensor
from colossalai.constants import INPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_GROUP_3D, OUTPUT_X_WEIGHT_3D, WEIGHT_GROUP_3D
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env