[gemini] optimize reduce scatter d2h copy (#5760)

* [gemini] optimize reduce scatter d2h copy

* [fix] fix missing reduce variable

* [refactor] remove legacy async reduce scatter code

* [gemini] missing sync

* Revert "[refactor] remove legacy async reduce scatter code"

This reverts commit 58ad76d466.

* [gemini] further optimize with async all reduce

* [fix] pass flag from manager to chunk
pull/5787/head
botbw 2024-06-05 14:23:13 +08:00 committed by GitHub
parent 10a19e22c6
commit 3f7e3131d9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 52 additions and 62 deletions

View File

@ -369,6 +369,11 @@ class GeminiPlugin(DPPluginBase):
assert precision in SUPPORTED_PRECISION, f"precision {precision} is not supported"
if get_accelerator().name == "npu":
assert placement_policy == "static", "NPU only supports static placement policy"
if placement_policy == "auto" and enable_async_reduce:
logging.warning(
f"enable_async_reduce requires pin_memory to achieve best performance, which is not implicitly set."
)
pin_memory = True
self.gemini_config = dict(
chunk_config_dict=chunk_config_dict,
chunk_init_device=(chunk_init_device or get_accelerator().get_current_device()),

View File

@ -316,12 +316,13 @@ class Chunk:
if self.shard_device.type == "cpu":
self.cuda_shard = None
def shard_move(self, device: torch.device, force_copy: bool = False):
def shard_move(self, device: torch.device, force_copy: bool = False, non_blocking=False):
"""Move the shard tensor in the chunk.
Args:
device: the device to which the shard will move
force_copy: if True, copy function is called mandatorily
non_blocking: if True, the operation is non-blocking, the caller is responsible for synchronization
"""
# sanity check
assert not self.is_gathered
@ -329,7 +330,7 @@ class Chunk:
# just use another way for the movement
if not self.optim_sync_flag:
assert device.type == "cuda" or device.type == "npu", "each chunk should first be moved to CUDA"
self.__paired_shard_move()
self.__paired_shard_move(non_blocking=non_blocking)
self.optim_sync_flag = True
return
@ -339,7 +340,7 @@ class Chunk:
if self.cuda_shard:
return
self.cuda_shard = self.cpu_shard.to(get_accelerator().get_current_device())
self.cuda_shard = self.cpu_shard.to(get_accelerator().get_current_device(), non_blocking=non_blocking)
if not self.pin_memory:
self.cpu_shard = None
@ -349,11 +350,11 @@ class Chunk:
if self.pin_memory:
if force_copy or not self.cpu_vis_flag:
self.cpu_shard.copy_(self.cuda_shard)
self.cpu_shard.copy_(self.cuda_shard, non_blocking=non_blocking)
# if cpu_shard has been visited
# copy operation is not need
else:
self.cpu_shard = self.cuda_shard.cpu()
self.cpu_shard = self.cuda_shard.to("cpu", non_blocking=non_blocking)
self.cpu_vis_flag = True
self.cuda_shard = None
else:
@ -542,7 +543,7 @@ class Chunk:
free_storage(self.cuda_global_chunk)
self.is_gathered = False
def __paired_shard_move(self):
def __paired_shard_move(self, non_blocking=False):
assert self.paired_chunk is not None, "chunks should be paired before training"
optim_chunk = self.paired_chunk
assert self.chunk_size == optim_chunk.chunk_size
@ -550,7 +551,7 @@ class Chunk:
# only be called when optimizer state is in CPU memory
# the grad and param should be in the same device
assert self.cuda_shard is None
temp = optim_chunk.cpu_shard.to(get_accelerator().get_current_device())
temp = optim_chunk.cpu_shard.to(get_accelerator().get_current_device(), non_blocking=non_blocking)
# avoid to transform FP32 in CPU
self.cuda_shard = temp.to(self.dtype)

View File

@ -117,7 +117,7 @@ class ChunkManager:
return None
self.__sub_memory_usage(chunk.memory_usage)
if chunk.device_type == "cpu":
chunk.shard_move(get_accelerator().get_current_device())
chunk.shard_move(get_accelerator().get_current_device(), non_blocking=async_access)
maybe_work = self.__add_accessed_chunk(chunk, async_access=async_access)
self.__add_memory_usage(chunk.memory_usage)
return maybe_work

View File

@ -147,6 +147,12 @@ class GeminiDDP(ModelWrapper):
self.extra_dp_group = extra_dp_group
self.master_weights = master_weights
self.enable_async_reduce = enable_async_reduce
if enable_async_reduce:
self.async_reduce_stream = torch.cuda.Stream()
else:
self.async_reduce_stream = None
self._logger = get_dist_logger()
@ -176,6 +182,7 @@ class GeminiDDP(ModelWrapper):
super().__init__(module)
self._non_persistent_buffers_set = self._get_non_persistent_buffers_set(module)
self._cast_buffers()
# register grad hook
for p in module.parameters():
if is_ddp_ignored(p):
@ -191,7 +198,7 @@ class GeminiDDP(ModelWrapper):
master_weights=self.master_weights,
enable_gradient_accumulation=self.enable_gradient_accumulation,
p=p,
async_reduce=enable_async_reduce,
async_reduce_stream=self.async_reduce_stream,
)
)
@ -339,10 +346,8 @@ class GeminiDDP(ModelWrapper):
setattr(param, "_gemini_reduced", False)
def _post_backward(self):
for param in self.param2name:
if hasattr(param, "_release_grad_chunk_cb"):
param._release_grad_chunk_cb()
delattr(param, "_release_grad_chunk_cb")
if self.enable_async_reduce:
self.async_reduce_stream.synchronize()
if self.chunk_manager.accessed_mem != 0:
error_params = ["Reduction failed at followed parameters:"]
@ -381,7 +386,7 @@ class GeminiDDP(ModelWrapper):
master_weights: bool,
enable_gradient_accumulation: bool,
p: nn.Parameter,
async_reduce: bool,
async_reduce_stream: Optional[torch.cuda.Stream] = None,
):
setattr(p, "_gemini_reduced", True)
empty_grad = torch.empty_like(grad)
@ -417,56 +422,35 @@ class GeminiDDP(ModelWrapper):
grad_chunk.copy_tensor_to_chunk_slice(p, grad, update_ptr=chunk_manager.reuse_fp16_chunk)
else:
grad_chunk.add_tensor_to_chunk_slice(p, grad)
reduced = chunk_manager.reduce_chunk(grad_chunk, async_op=async_reduce)
if reduced: # if not async, can release immediately, else release in when work finished
if async_reduce:
# dirty fix by installing callback
assert not hasattr(p, "_release_grad_chunk_cb")
def _release_grad_chunk_cb():
grad_chunk.wait_async_reduce()
GeminiDDP.release_grad_chunk_handle(
chunk_manager,
grads_device,
master_weights,
enable_gradient_accumulation,
p,
chunk,
grad_chunk,
)
if async_reduce_stream is not None:
async_reduce_stream.wait_stream(torch.cuda.current_stream())
p._release_grad_chunk_cb = _release_grad_chunk_cb
else:
GeminiDDP.release_grad_chunk_handle(
chunk_manager, grads_device, master_weights, enable_gradient_accumulation, p, chunk, grad_chunk
)
return empty_grad
@staticmethod
def release_grad_chunk_handle(
chunk_manager, grads_device, master_weights, enable_gradient_accumulation, p, chunk, grad_chunk
):
if not chunk_manager.reuse_fp16_chunk:
if chunk.keep_gathered:
chunk_manager.fake_release_chunk(chunk)
else:
chunk_manager.release_chunk(chunk)
if grad_chunk.is_gathered:
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
if chunk.extra_dp_group is not None:
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
else:
grad_chunk.cuda_shard.div_(chunk.pg_size)
if chunk.extra_dp_group is not None:
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
# check overflow elements
chunk_manager.overflow_counter += grad_chunk.has_inf_or_nan
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
if chunk.l2_norm_flag:
grad_chunk.set_l2_norm()
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
if not (master_weights) or (enable_gradient_accumulation):
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
with torch.cuda.stream(async_reduce_stream):
reduced = chunk_manager.reduce_chunk(grad_chunk, async_op=(async_reduce_stream is not None))
if reduced:
grad_chunk.wait_async_reduce()
if not chunk_manager.reuse_fp16_chunk:
if chunk.keep_gathered:
chunk_manager.fake_release_chunk(chunk)
else:
chunk_manager.release_chunk(chunk)
if grad_chunk.is_gathered:
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
if chunk.extra_dp_group is not None:
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
else:
grad_chunk.cuda_shard.div_(chunk.pg_size)
if chunk.extra_dp_group is not None:
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
# check overflow elements
chunk_manager.overflow_counter += grad_chunk.has_inf_or_nan
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
if chunk.l2_norm_flag:
grad_chunk.set_l2_norm()
chunk_manager.move_chunk(grad_chunk, grads_device[p], force_copy=True)
if not (master_weights) or (enable_gradient_accumulation):
chunk_manager.move_chunk(chunk, grads_device[p], force_copy=True)
def zero_grad(self, set_to_none: bool = False) -> None:
self.module.zero_grad(set_to_none=True)