mirror of https://github.com/hpcaitech/ColossalAI
[pipeline]: support arbitrary batch size in forward_only mode (#5201)
* fix: remove drop last in val & test dataloader * feat: add run_forward_only, support arbitrary bs * chore: modify ci scriptpull/4976/merge
parent
02d2328a04
commit
3c0d82b19b
|
@ -1,5 +1,5 @@
|
|||
from functools import partial
|
||||
from typing import Any, Callable, Iterable, List, Optional, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
|
@ -22,6 +22,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
num_model_chunks: int,
|
||||
num_microbatch: Optional[int] = None,
|
||||
microbatch_size: Optional[int] = None,
|
||||
enable_metadata_cache: bool = True,
|
||||
) -> None:
|
||||
super().__init__(stage_manager)
|
||||
assert (
|
||||
|
@ -39,6 +40,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
self.microbatch_offset: List[int]
|
||||
|
||||
# P2PMeta cache
|
||||
self.enable_metadata_cache = enable_metadata_cache
|
||||
self.send_metadata_forward = True
|
||||
self.send_metadata_backward = True
|
||||
self.metadata_recv_forward = None
|
||||
|
@ -54,30 +56,33 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
batch = next(data_iter)
|
||||
if device is not None:
|
||||
batch = tree_map(partial(to_device, device=device), batch)
|
||||
|
||||
self.microbatch_offset = [0 for _ in range(self.num_model_chunks)]
|
||||
self.batch = batch
|
||||
self.batch_size = get_batch_size(batch)
|
||||
if self.last_batch_size is None:
|
||||
self.last_batch_size = self.batch_size
|
||||
else:
|
||||
assert self.forward_only or self.last_batch_size == self.batch_size
|
||||
# TODO: support arbitrary batch size when forward_only=True
|
||||
self.microbatch_offset = [0 for _ in range(self.num_model_chunks)]
|
||||
if self.num_microbatch is not None:
|
||||
|
||||
if self.microbatch_size is None:
|
||||
assert self.batch_size % self.num_microbatch == 0, "Batch size should divided by the number of microbatch"
|
||||
self.microbatch_size = self.batch_size // self.num_microbatch
|
||||
elif self.microbatch_size is not None:
|
||||
if self.num_microbatch is None:
|
||||
assert self.batch_size % self.microbatch_size == 0, "Batch size should divided by the microbatch size"
|
||||
self.num_microbatch = self.batch_size // self.microbatch_size
|
||||
else:
|
||||
raise ValueError("Either num_microbatch or microbatch_size should be provided")
|
||||
|
||||
assert (
|
||||
self.num_microbatch % self.num_model_chunks == 0
|
||||
), "Number of microbatch should be an integer multiple of number of model chunks"
|
||||
if not self.forward_only:
|
||||
assert self.last_batch_size is None or self.last_batch_size == self.batch_size
|
||||
assert self.batch_size == self.microbatch_size * self.num_microbatch
|
||||
|
||||
assert (
|
||||
self.num_microbatch % self.stage_manager.num_stages == 0
|
||||
), "Number of microbatch should be an integer multiple of number of pipeline parallel devices"
|
||||
if self.forward_only:
|
||||
self.num_microbatch = (self.batch_size - 1) // self.microbatch_size + 1
|
||||
# NOTE: disable metadata cache when batch size changes (not valid anymore)
|
||||
if self.batch_size != self.last_batch_size:
|
||||
self.enable_metadata_cache = False
|
||||
self.send_metadata_forward = True
|
||||
self.send_metadata_backward = True
|
||||
self.metadata_recv_forward = None
|
||||
self.metadata_recv_backward = None
|
||||
|
||||
self.last_batch_size = self.batch_size
|
||||
|
||||
def load_micro_batch(self, model_chunk_id: int) -> Any:
|
||||
"""Load a micro batch from the current batch.
|
||||
|
@ -88,6 +93,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
Returns:
|
||||
Any: Micro batch.
|
||||
"""
|
||||
assert self.microbatch_offset[model_chunk_id] <= self.batch_size, "Microbatches exhausted"
|
||||
micro_batch = get_micro_batch(self.batch, self.microbatch_offset[model_chunk_id], self.microbatch_size)
|
||||
self.microbatch_offset[model_chunk_id] += self.microbatch_size
|
||||
return tree_map(partial(to_device, device=get_current_device()), micro_batch)
|
||||
|
@ -122,7 +128,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
||||
if not self.stage_manager.is_first_stage():
|
||||
input_tensor = self.comm.recv_forward(prev_rank, metadata_recv=self.metadata_recv_forward)
|
||||
if self.metadata_recv_forward is None:
|
||||
if self.enable_metadata_cache and self.metadata_recv_forward is None:
|
||||
self.metadata_recv_forward = create_fast_send_metadata(input_tensor)
|
||||
|
||||
return input_tensor
|
||||
|
@ -141,7 +147,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
||||
if not self.stage_manager.is_last_stage():
|
||||
output_tensor_grad = self.comm.recv_backward(next_rank, metadata_recv=self.metadata_recv_backward)
|
||||
if self.metadata_recv_backward is None:
|
||||
if self.enable_metadata_cache and self.metadata_recv_backward is None:
|
||||
self.metadata_recv_backward = create_fast_send_metadata(output_tensor_grad)
|
||||
|
||||
return output_tensor_grad
|
||||
|
@ -158,7 +164,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
||||
if not self.stage_manager.is_last_stage():
|
||||
self.comm.send_forward(output_object, next_rank, send_metadata=self.send_metadata_forward)
|
||||
self.send_metadata_forward = False
|
||||
self.send_metadata_forward = not self.enable_metadata_cache
|
||||
|
||||
def send_backward(self, model_chunk_id: int, input_object: Any, prev_rank: int = None) -> None:
|
||||
"""Sends the gradient tensor to the previous stage in pipeline.
|
||||
|
@ -172,7 +178,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
with self.stage_manager.switch_model_chunk_id(model_chunk_id):
|
||||
if not self.stage_manager.is_first_stage():
|
||||
self.comm.send_backward(input_object, prev_rank, send_metadata=self.send_metadata_backward)
|
||||
self.send_metadata_backward = False
|
||||
self.send_metadata_backward = not self.enable_metadata_cache
|
||||
|
||||
def send_forward_recv_backward(
|
||||
self, model_chunk_id: int, output_object: Any, next_rank: Optional[int] = None
|
||||
|
@ -185,8 +191,8 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
send_metadata=self.send_metadata_forward,
|
||||
metadata_recv=self.metadata_recv_backward,
|
||||
)
|
||||
self.send_metadata_forward = False
|
||||
if self.metadata_recv_backward is None:
|
||||
self.send_metadata_forward = not self.enable_metadata_cache
|
||||
if self.enable_metadata_cache and self.metadata_recv_backward is None:
|
||||
self.metadata_recv_backward = create_fast_send_metadata(output_tensor_grad)
|
||||
|
||||
return output_tensor_grad
|
||||
|
@ -202,8 +208,8 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
send_metadata=self.send_metadata_backward,
|
||||
metadata_recv=self.metadata_recv_forward,
|
||||
)
|
||||
self.send_metadata_backward = False
|
||||
if self.metadata_recv_forward is None:
|
||||
self.send_metadata_backward = not self.enable_metadata_cache
|
||||
if self.enable_metadata_cache and self.metadata_recv_forward is None:
|
||||
self.metadata_recv_forward = create_fast_send_metadata(input_tensor)
|
||||
|
||||
return input_tensor
|
||||
|
@ -297,6 +303,122 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
input_obj_grad[k] = v.grad
|
||||
return input_obj_grad
|
||||
|
||||
def run_forward_only(
|
||||
self,
|
||||
model_chunk: Union[ModuleList, Module],
|
||||
data_iter: Iterable,
|
||||
criterion: Callable[..., Any],
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False,
|
||||
) -> Dict:
|
||||
assert self.forward_only
|
||||
|
||||
self.load_batch(data_iter)
|
||||
|
||||
outputs = [] if return_outputs and self.stage_manager.is_last_stage(ignore_chunk=True) else None
|
||||
|
||||
accum_loss = None
|
||||
if return_loss and self.stage_manager.is_last_stage(ignore_chunk=True):
|
||||
accum_loss = torch.scalar_tensor(0, device=get_current_device())
|
||||
|
||||
# Run warmup forward passes.
|
||||
for i in range(self.num_microbatch * self.num_model_chunks):
|
||||
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
|
||||
input_obj = self.recv_forward(model_chunk_id)
|
||||
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
||||
self.send_forward(model_chunk_id, output_obj)
|
||||
|
||||
if outputs is not None:
|
||||
outputs = merge_batch(outputs)
|
||||
return {"loss": accum_loss, "outputs": outputs}
|
||||
|
||||
def run_forward_backward(
|
||||
self,
|
||||
model_chunk: Union[ModuleList, Module],
|
||||
data_iter: Iterable,
|
||||
criterion: Callable[..., Any],
|
||||
optimizer: Optional[OptimizerWrapper] = None,
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False,
|
||||
) -> Dict:
|
||||
"""
|
||||
Runs interleaved schedule, with communication between pipeline stages.
|
||||
"""
|
||||
assert not self.forward_only
|
||||
|
||||
self.load_batch(data_iter)
|
||||
|
||||
num_microbatch = self.num_microbatch * self.num_model_chunks
|
||||
num_warmup_microbatch = (self.stage_manager.num_stages - self.stage_manager.stage - 1) * 2
|
||||
num_warmup_microbatch += (self.num_model_chunks - 1) * self.stage_manager.num_stages
|
||||
num_warmup_microbatch = min(num_warmup_microbatch, num_microbatch)
|
||||
num_microbatch_remaining = num_microbatch - num_warmup_microbatch
|
||||
|
||||
# Input, output tensors only need to be saved when doing backward passes
|
||||
input_objs = [[] for _ in range(self.num_model_chunks)]
|
||||
output_objs = [[] for _ in range(self.num_model_chunks)]
|
||||
|
||||
outputs = [] if return_outputs and self.stage_manager.is_last_stage(ignore_chunk=True) else None
|
||||
|
||||
accum_loss = None
|
||||
if return_loss and self.stage_manager.is_last_stage(ignore_chunk=True):
|
||||
accum_loss = torch.scalar_tensor(0, device=get_current_device())
|
||||
|
||||
# Run warmup forward passes.
|
||||
for i in range(num_warmup_microbatch):
|
||||
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
|
||||
input_obj = self.recv_forward(model_chunk_id)
|
||||
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
||||
input_objs[model_chunk_id].append(input_obj)
|
||||
output_objs[model_chunk_id].append(output_obj)
|
||||
self.send_forward(model_chunk_id, output_obj)
|
||||
|
||||
if num_microbatch_remaining > 0:
|
||||
model_chunk_id = self.get_model_chunk_id(num_warmup_microbatch, is_forward=True)
|
||||
input_obj = self.recv_forward(model_chunk_id)
|
||||
|
||||
# Run 1F1B in steady state.
|
||||
for i in range(num_microbatch_remaining):
|
||||
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch, is_forward=True)
|
||||
last_iteration = i == num_microbatch_remaining - 1
|
||||
|
||||
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
||||
self.send_forward(model_chunk_id, output_obj)
|
||||
# Add input_obj and output_obj to end of list.
|
||||
input_objs[model_chunk_id].append(input_obj)
|
||||
output_objs[model_chunk_id].append(output_obj)
|
||||
|
||||
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
||||
output_obj_grad = self.recv_backward(model_chunk_id)
|
||||
|
||||
# Pop output_obj and output_obj from the start of the list for
|
||||
# the backward pass.
|
||||
input_obj = input_objs[model_chunk_id].pop(0)
|
||||
output_obj = output_objs[model_chunk_id].pop(0)
|
||||
|
||||
# backward
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
self.send_backward(model_chunk_id, input_obj_grad)
|
||||
|
||||
if not last_iteration:
|
||||
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch + 1, is_forward=True)
|
||||
input_obj = self.recv_forward(model_chunk_id)
|
||||
|
||||
# Run cooldown backward passes.
|
||||
for i in range(num_microbatch_remaining, num_microbatch):
|
||||
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
||||
input_obj = input_objs[model_chunk_id].pop(0)
|
||||
output_obj = output_objs[model_chunk_id].pop(0)
|
||||
output_obj_grad = self.recv_backward(model_chunk_id)
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
self.send_backward(model_chunk_id, input_obj_grad)
|
||||
|
||||
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs)
|
||||
|
||||
if outputs is not None:
|
||||
outputs = merge_batch(outputs)
|
||||
return {"loss": accum_loss, "outputs": outputs}
|
||||
|
||||
def forward_backward_step(
|
||||
self,
|
||||
model_chunk: Union[ModuleList, Module],
|
||||
|
@ -306,8 +428,7 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
return_loss: bool = False,
|
||||
return_outputs: bool = False,
|
||||
) -> dict:
|
||||
"""Runs interleaved schedule, with communication between pipeline stages.
|
||||
|
||||
"""
|
||||
Args:
|
||||
model_chunk (ModuleList or Module): Model Chunk to be trained. Original interleaved uses a module list whereas shardformer uses entire model + layer specification
|
||||
data_iter (Iterable): Data iterator.
|
||||
|
@ -323,93 +444,11 @@ class InterleavedSchedule(PipelineSchedule):
|
|||
if optimizer is None:
|
||||
assert self.forward_only, "Optimizer should be passed when doing backward."
|
||||
|
||||
self.load_batch(data_iter)
|
||||
|
||||
num_microbatch = self.num_microbatch * self.num_model_chunks
|
||||
if self.forward_only:
|
||||
num_warmup_microbatch = num_microbatch
|
||||
result = self.run_forward_only(model_chunk, data_iter, criterion, return_loss, return_outputs)
|
||||
else:
|
||||
num_warmup_microbatch = (self.stage_manager.num_stages - self.stage_manager.stage - 1) * 2
|
||||
num_warmup_microbatch += (self.num_model_chunks - 1) * self.stage_manager.num_stages
|
||||
num_warmup_microbatch = min(num_warmup_microbatch, num_microbatch)
|
||||
result = self.run_forward_backward(
|
||||
model_chunk, data_iter, criterion, optimizer, return_loss, return_outputs
|
||||
)
|
||||
|
||||
num_microbatch_remaining = num_microbatch - num_warmup_microbatch
|
||||
|
||||
# Input, output tensors only need to be saved when doing backward passes
|
||||
input_objs = None
|
||||
output_objs = None
|
||||
|
||||
if not self.forward_only:
|
||||
input_objs = [[] for _ in range(self.num_model_chunks)]
|
||||
output_objs = [[] for _ in range(self.num_model_chunks)]
|
||||
|
||||
outputs = [] if return_outputs and self.stage_manager.is_last_stage(ignore_chunk=True) else None
|
||||
|
||||
accum_loss = None
|
||||
if return_loss and self.stage_manager.is_last_stage(ignore_chunk=True):
|
||||
accum_loss = torch.zeros(1, device=get_current_device())
|
||||
|
||||
# Run warmup forward passes.
|
||||
for i in range(num_warmup_microbatch):
|
||||
model_chunk_id = self.get_model_chunk_id(i, is_forward=True)
|
||||
input_obj = self.recv_forward(model_chunk_id)
|
||||
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
||||
if not self.forward_only:
|
||||
input_objs[model_chunk_id].append(input_obj)
|
||||
output_objs[model_chunk_id].append(output_obj)
|
||||
self.send_forward(model_chunk_id, output_obj)
|
||||
|
||||
if num_microbatch_remaining > 0:
|
||||
model_chunk_id = self.get_model_chunk_id(num_warmup_microbatch, is_forward=True)
|
||||
input_obj = self.recv_forward(model_chunk_id)
|
||||
|
||||
# Run 1F1B in steady state.
|
||||
for i in range(num_microbatch_remaining):
|
||||
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch, is_forward=True)
|
||||
last_iteration = i == num_microbatch_remaining - 1
|
||||
|
||||
output_obj = self.forward_step(model_chunk, model_chunk_id, input_obj, criterion, accum_loss, outputs)
|
||||
if self.forward_only:
|
||||
if not last_iteration:
|
||||
input_obj = self.send_forward_recv_backward(model_chunk_id, output_obj)
|
||||
else:
|
||||
self.send_forward(model_chunk_id, output_obj)
|
||||
|
||||
else:
|
||||
self.send_forward(model_chunk_id, output_obj)
|
||||
# Add input_obj and output_obj to end of list.
|
||||
input_objs[model_chunk_id].append(input_obj)
|
||||
output_objs[model_chunk_id].append(output_obj)
|
||||
|
||||
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
||||
output_obj_grad = self.recv_backward(model_chunk_id)
|
||||
|
||||
# Pop output_obj and output_obj from the start of the list for
|
||||
# the backward pass.
|
||||
input_obj = input_objs[model_chunk_id].pop(0)
|
||||
output_obj = output_objs[model_chunk_id].pop(0)
|
||||
|
||||
# backward
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
self.send_backward(model_chunk_id, input_obj_grad)
|
||||
|
||||
if not last_iteration:
|
||||
model_chunk_id = self.get_model_chunk_id(i + num_warmup_microbatch + 1, is_forward=True)
|
||||
input_obj = self.recv_forward(model_chunk_id)
|
||||
|
||||
# Run cooldown backward passes.
|
||||
if not self.forward_only:
|
||||
for i in range(num_microbatch_remaining, num_microbatch):
|
||||
model_chunk_id = self.get_model_chunk_id(i, is_forward=False)
|
||||
input_obj = input_objs[model_chunk_id].pop(0)
|
||||
output_obj = output_objs[model_chunk_id].pop(0)
|
||||
output_obj_grad = self.recv_backward(model_chunk_id)
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
self.send_backward(model_chunk_id, input_obj_grad)
|
||||
|
||||
if not self.forward_only:
|
||||
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs)
|
||||
|
||||
if outputs is not None:
|
||||
outputs = merge_batch(outputs)
|
||||
return {"loss": accum_loss, "outputs": outputs}
|
||||
return result
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from functools import partial
|
||||
from typing import Any, Callable, Iterable, List, Optional, Union
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
|
@ -30,6 +30,7 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
stage_manager: PipelineStageManager,
|
||||
num_microbatches: Optional[int] = None,
|
||||
microbatch_size: Optional[int] = None,
|
||||
enable_metadata_cache: bool = True,
|
||||
) -> None:
|
||||
"""1F1B pipeline schedule.
|
||||
|
||||
|
@ -50,9 +51,9 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
self.batch_size: Optional[int] = None
|
||||
self.last_batch_size: Optional[int] = None
|
||||
self.microbatch_offset: Optional[int] = None
|
||||
self._use_microbatch_size = num_microbatches is None
|
||||
|
||||
# P2PMeta cache
|
||||
self.enable_metadata_cache = enable_metadata_cache
|
||||
self.send_metadata_forward = True
|
||||
self.send_metadata_backward = True
|
||||
self.metadata_recv_forward = None
|
||||
|
@ -69,29 +70,40 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
if device is not None:
|
||||
batch = tree_map(partial(to_device, device=device), batch)
|
||||
|
||||
self.microbatch_offset = 0
|
||||
self.batch = batch
|
||||
self.batch_size = get_batch_size(batch)
|
||||
if self.last_batch_size is None:
|
||||
self.last_batch_size = self.batch_size
|
||||
else:
|
||||
assert self.forward_only or self.last_batch_size == self.batch_size
|
||||
# TODO: support arbitrary batch size when forward_only=True
|
||||
self.microbatch_offset = 0
|
||||
if not self._use_microbatch_size:
|
||||
assert (
|
||||
self.batch_size % self.num_microbatches == 0
|
||||
), "Batch size should divided by the number of microbatches"
|
||||
|
||||
if self.microbatch_size is None:
|
||||
assert self.batch_size % self.num_microbatches == 0, "Batch size should divided by # microbatches"
|
||||
self.microbatch_size = self.batch_size // self.num_microbatches
|
||||
else:
|
||||
if self.num_microbatches is None:
|
||||
assert self.batch_size % self.microbatch_size == 0, "Batch size should divided by the microbatch size"
|
||||
self.num_microbatches = self.batch_size // self.microbatch_size
|
||||
|
||||
if not self.forward_only:
|
||||
assert self.last_batch_size is None or self.last_batch_size == self.batch_size
|
||||
assert self.batch_size == self.microbatch_size * self.num_microbatches
|
||||
|
||||
if self.forward_only:
|
||||
self.num_microbatches = (self.batch_size - 1) // self.microbatch_size + 1
|
||||
# NOTE: disable metadata cache when batch size changes (not valid anymore)
|
||||
if self.batch_size != self.last_batch_size:
|
||||
self.enable_metadata_cache = False
|
||||
self.send_metadata_forward = True
|
||||
self.send_metadata_backward = True
|
||||
self.metadata_recv_forward = None
|
||||
self.metadata_recv_backward = None
|
||||
|
||||
self.last_batch_size = self.batch_size
|
||||
|
||||
def load_micro_batch(self) -> Any:
|
||||
"""Load a micro batch from the current batch.
|
||||
|
||||
Returns:
|
||||
Any: Micro batch.
|
||||
"""
|
||||
assert self.microbatch_offset <= self.batch_size, "Microbatches exhausted"
|
||||
micro_batch = get_micro_batch(self.batch, self.microbatch_offset, self.microbatch_size)
|
||||
self.microbatch_offset += self.microbatch_size
|
||||
return tree_map(partial(to_device, device=get_current_device()), micro_batch)
|
||||
|
@ -108,7 +120,7 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
"""
|
||||
if not self.stage_manager.is_first_stage():
|
||||
input_tensor = self.comm.recv_forward(prev_rank, metadata_recv=self.metadata_recv_forward)
|
||||
if self.metadata_recv_forward is None:
|
||||
if self.enable_metadata_cache and self.metadata_recv_forward is None:
|
||||
self.metadata_recv_forward = create_fast_send_metadata(input_tensor)
|
||||
|
||||
return input_tensor
|
||||
|
@ -125,7 +137,7 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
"""
|
||||
if not self.stage_manager.is_last_stage():
|
||||
output_tensor_grad = self.comm.recv_backward(next_rank, metadata_recv=self.metadata_recv_backward)
|
||||
if self.metadata_recv_backward is None:
|
||||
if self.enable_metadata_cache and self.metadata_recv_backward is None:
|
||||
self.metadata_recv_backward = create_fast_send_metadata(output_tensor_grad)
|
||||
|
||||
return output_tensor_grad
|
||||
|
@ -140,7 +152,7 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
"""
|
||||
if not self.stage_manager.is_last_stage():
|
||||
self.comm.send_forward(output_object, next_rank, send_metadata=self.send_metadata_forward)
|
||||
self.send_metadata_forward = False
|
||||
self.send_metadata_forward = not self.enable_metadata_cache
|
||||
|
||||
def send_backward(self, input_object: Any, prev_rank: int = None) -> None:
|
||||
"""Sends the gradient tensor to the previous stage in pipeline.
|
||||
|
@ -152,7 +164,7 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
"""
|
||||
if not self.stage_manager.is_first_stage():
|
||||
self.comm.send_backward(input_object, prev_rank, send_metadata=self.send_metadata_backward)
|
||||
self.send_metadata_backward = False
|
||||
self.send_metadata_backward = not self.enable_metadata_cache
|
||||
|
||||
def send_forward_recv_backward(self, output_object: Any, next_rank: int = None) -> Any:
|
||||
"""Sends the input tensor to the next stage and copy the gradient tensor from the next stage in pipeline.
|
||||
|
@ -169,8 +181,8 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
send_metadata=self.send_metadata_forward,
|
||||
metadata_recv=self.metadata_recv_backward,
|
||||
)
|
||||
self.send_metadata_forward = False
|
||||
if self.metadata_recv_backward is None:
|
||||
self.send_metadata_forward = not self.enable_metadata_cache
|
||||
if self.enable_metadata_cache and self.metadata_recv_backward is None:
|
||||
self.metadata_recv_backward = create_fast_send_metadata(output_tensor_grad)
|
||||
|
||||
return output_tensor_grad
|
||||
|
@ -190,8 +202,8 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
send_metadata=self.send_metadata_backward,
|
||||
metadata_recv=self.metadata_recv_forward,
|
||||
)
|
||||
self.send_metadata_backward = False
|
||||
if self.metadata_recv_forward is None:
|
||||
self.send_metadata_backward = not self.enable_metadata_cache
|
||||
if self.enable_metadata_cache and self.metadata_recv_forward is None:
|
||||
self.metadata_recv_forward = create_fast_send_metadata(input_tensor)
|
||||
|
||||
return input_tensor
|
||||
|
@ -274,7 +286,38 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
input_obj_grad[k] = v.grad
|
||||
return input_obj_grad
|
||||
|
||||
def forward_backward_step(
|
||||
def run_forward_only(
|
||||
self,
|
||||
model: Module,
|
||||
data_iter: Iterable,
|
||||
criterion: Callable[..., Any],
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False,
|
||||
) -> Dict:
|
||||
"""
|
||||
Runs forward only schedule, with communication between pipeline stages.
|
||||
"""
|
||||
assert self.forward_only
|
||||
|
||||
self.load_batch(data_iter)
|
||||
|
||||
accum_loss = None
|
||||
if return_loss and self.stage_manager.is_last_stage():
|
||||
accum_loss = torch.scalar_tensor(0, device=get_current_device())
|
||||
outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None
|
||||
|
||||
for _ in range(self.num_microbatches):
|
||||
input_obj = self.recv_forward()
|
||||
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs)
|
||||
self.send_forward(output_obj)
|
||||
|
||||
if outputs is not None:
|
||||
if isinstance(model, ModelWrapper):
|
||||
model = model.unwrap()
|
||||
outputs = merge_batch(outputs, getattr(model, "batch_size_dim", 0))
|
||||
return {"loss": accum_loss, "outputs": outputs}
|
||||
|
||||
def run_forward_backward(
|
||||
self,
|
||||
model: Module,
|
||||
data_iter: Iterable,
|
||||
|
@ -282,24 +325,11 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
optimizer: Optional[OptimizerWrapper] = None,
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False,
|
||||
) -> dict:
|
||||
"""Runs non-interleaved 1F1B schedule, with communication between pipeline stages.
|
||||
|
||||
Args:
|
||||
model (Module): Model to be trained.
|
||||
data_iter (Iterable): Data iterator.
|
||||
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
|
||||
optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None.
|
||||
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
|
||||
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
|
||||
|
||||
Returns:
|
||||
dict: A dict with keys: 'loss' and 'outputs'.
|
||||
) -> Dict:
|
||||
"""
|
||||
|
||||
self.forward_only = not torch.is_grad_enabled()
|
||||
if optimizer is None:
|
||||
assert self.forward_only, "Optimizer should be passed when doing backward."
|
||||
Runs non-interleaved 1F1B schedule, with communication between pipeline stages.
|
||||
"""
|
||||
assert not self.forward_only
|
||||
|
||||
self.load_batch(data_iter)
|
||||
|
||||
|
@ -309,16 +339,11 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
num_microbatches_remaining = self.num_microbatches - num_warmup_microbatches
|
||||
|
||||
# Input, output tensors only need to be saved when doing backward passes
|
||||
input_objs = None
|
||||
output_objs = None
|
||||
|
||||
if not self.forward_only:
|
||||
input_objs = []
|
||||
output_objs = []
|
||||
input_objs, output_objs = [], []
|
||||
|
||||
accum_loss = None
|
||||
if return_loss and self.stage_manager.is_last_stage():
|
||||
accum_loss = torch.zeros(1, device=get_current_device())
|
||||
accum_loss = torch.scalar_tensor(0, device=get_current_device())
|
||||
outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None
|
||||
|
||||
# Run warmup forward passes.
|
||||
|
@ -326,10 +351,8 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
input_obj = self.recv_forward()
|
||||
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs)
|
||||
self.send_forward(output_obj)
|
||||
|
||||
if not self.forward_only:
|
||||
input_objs.append(input_obj)
|
||||
output_objs.append(output_obj)
|
||||
input_objs.append(input_obj)
|
||||
output_objs.append(output_obj)
|
||||
|
||||
# Before running 1F1B, need to receive first forward tensor.
|
||||
# If all microbatches are run in warmup / cooldown phase, then no need to
|
||||
|
@ -342,45 +365,68 @@ class OneForwardOneBackwardSchedule(PipelineSchedule):
|
|||
last_iteration = i == (num_microbatches_remaining - 1)
|
||||
|
||||
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs)
|
||||
output_obj_grad = self.send_forward_recv_backward(output_obj)
|
||||
# Add input_obj and output_obj to end of list.
|
||||
input_objs.append(input_obj)
|
||||
output_objs.append(output_obj)
|
||||
|
||||
if self.forward_only:
|
||||
self.send_forward(output_obj)
|
||||
|
||||
if not last_iteration:
|
||||
input_obj = self.recv_forward()
|
||||
# Pop output_obj and output_obj from the start of the list for
|
||||
# the backward pass.
|
||||
input_obj = input_objs.pop(0)
|
||||
output_obj = output_objs.pop(0)
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
|
||||
if last_iteration:
|
||||
self.send_backward(input_obj_grad)
|
||||
else:
|
||||
output_obj_grad = self.send_forward_recv_backward(output_obj)
|
||||
# Add input_obj and output_obj to end of list.
|
||||
input_objs.append(input_obj)
|
||||
output_objs.append(output_obj)
|
||||
|
||||
# Pop output_obj and output_obj from the start of the list for
|
||||
# the backward pass.
|
||||
input_obj = input_objs.pop(0)
|
||||
output_obj = output_objs.pop(0)
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
|
||||
if last_iteration:
|
||||
self.send_backward(input_obj_grad)
|
||||
else:
|
||||
input_obj = self.send_backward_recv_forward(input_obj_grad)
|
||||
input_obj = self.send_backward_recv_forward(input_obj_grad)
|
||||
|
||||
# Run cooldown backward passes.
|
||||
if not self.forward_only:
|
||||
for i in range(num_warmup_microbatches):
|
||||
input_obj = input_objs.pop(0)
|
||||
output_obj = output_objs.pop(0)
|
||||
for i in range(num_warmup_microbatches):
|
||||
input_obj = input_objs.pop(0)
|
||||
output_obj = output_objs.pop(0)
|
||||
|
||||
output_obj_grad = self.recv_backward()
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
self.send_backward(input_obj_grad)
|
||||
output_obj_grad = self.recv_backward()
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
self.send_backward(input_obj_grad)
|
||||
|
||||
if not self.forward_only:
|
||||
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs)
|
||||
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs)
|
||||
|
||||
if outputs is not None:
|
||||
if isinstance(model, ModelWrapper):
|
||||
model = model.unwrap()
|
||||
outputs = merge_batch(outputs, getattr(model, "batch_size_dim", 0))
|
||||
return {"loss": accum_loss, "outputs": outputs}
|
||||
|
||||
def forward_backward_step(
|
||||
self,
|
||||
model: Module,
|
||||
data_iter: Iterable,
|
||||
criterion: Callable[..., Any],
|
||||
optimizer: Optional[OptimizerWrapper] = None,
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False,
|
||||
) -> dict:
|
||||
"""
|
||||
Args:
|
||||
model (Module): Model to be trained.
|
||||
data_iter (Iterable): Data iterator.
|
||||
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
|
||||
optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None.
|
||||
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
|
||||
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
|
||||
|
||||
Returns:
|
||||
dict: Dictionary containing loss and outputs.
|
||||
"""
|
||||
|
||||
self.forward_only = not torch.is_grad_enabled()
|
||||
if optimizer is None:
|
||||
assert self.forward_only, "Optimizer should be passed when doing backward."
|
||||
|
||||
if self.forward_only:
|
||||
result = self.run_forward_only(model, data_iter, criterion, return_loss, return_outputs)
|
||||
else:
|
||||
result = self.run_forward_backward(model, data_iter, criterion, optimizer, return_loss, return_outputs)
|
||||
|
||||
return result
|
||||
|
|
|
@ -88,24 +88,21 @@ class GLUEDataBuilder:
|
|||
)
|
||||
|
||||
def val_dataloader(self):
|
||||
# TODO: drop_last is set to True for now to avoid error when using PP
|
||||
# as the last batch may not be divisible by the number of microbatches
|
||||
if len(self.eval_splits) == 1:
|
||||
return self.plugin.prepare_dataloader(
|
||||
self.dataset["validation"], batch_size=self.eval_batch_size, drop_last=True
|
||||
)
|
||||
return self.plugin.prepare_dataloader(self.dataset["validation"], batch_size=self.eval_batch_size)
|
||||
elif len(self.eval_splits) > 1:
|
||||
return [
|
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size, drop_last=True)
|
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size)
|
||||
for x in self.eval_splits
|
||||
]
|
||||
|
||||
def test_dataloader(self):
|
||||
if len(self.eval_splits) == 1:
|
||||
return self.plugin.prepare_dataloader(self.dataset["test"], batch_size=self.eval_batch_size, drop_last=True)
|
||||
return self.plugin.prepare_dataloader(self.dataset["test"], batch_size=self.eval_batch_size)
|
||||
elif len(self.eval_splits) > 1:
|
||||
return [
|
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size, drop_last=True)
|
||||
self.plugin.prepare_dataloader(self.dataset[x], batch_size=self.eval_batch_size)
|
||||
for x in self.eval_splits
|
||||
]
|
||||
|
||||
|
|
|
@ -1,8 +1,17 @@
|
|||
#!/bin/bash
|
||||
set -xe
|
||||
set -x
|
||||
|
||||
pip install -r requirements.txt
|
||||
|
||||
FAIL_LIMIT=3
|
||||
|
||||
for plugin in "torch_ddp" "torch_ddp_fp16" "gemini" "low_level_zero" "hybrid_parallel"; do
|
||||
torchrun --standalone --nproc_per_node 4 finetune.py --target_f1 0.86 --plugin $plugin --model_type "bert"
|
||||
for i in $(seq 1 $FAIL_LIMIT); do
|
||||
torchrun --standalone --nproc_per_node 4 finetune.py --target_f1 0.86 --plugin $plugin --model_type "bert" && break
|
||||
echo "Failed $i times"
|
||||
if [ $i -eq $FAIL_LIMIT ]; then
|
||||
echo "Failed $FAIL_LIMIT times, exiting"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
done
|
||||
|
|
Loading…
Reference in New Issue