[plugin] a workaround for zero plugins' optimizer checkpoint (#3780)

* [test] refactor torch ddp checkpoint test

* [plugin] update low level zero optim checkpoint

* [plugin] update gemini optim checkpoint
pull/4788/head
Hongxin Liu 2023-05-19 19:42:31 +08:00 committed by GitHub
parent 60e6a154bc
commit 3c07a2846e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 128 additions and 82 deletions

View File

@ -52,8 +52,16 @@ class GeminiCheckpointIO(GeneralCheckpointIO):
Save optimizer to checkpoint but only on master process.
"""
# TODO(ver217): optimizer state dict is sharded
warnings.warn('GeminiPlugin does not support save full optimizer checkpoint now. Save it on every process.')
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
super().save_unsharded_optimizer(optimizer, checkpoint, gather_dtensor)
def load_optimizer(self, optimizer: Optimizer, checkpoint: str):
warnings.warn(
'GeminiPlugin can only load optimizer checkpoint saved by itself with the same number of processes.')
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
super().load_optimizer(optimizer, checkpoint)
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
"""
Save model to checkpoint but only on master process.

View File

@ -9,7 +9,7 @@ from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils._pytree import tree_map
from torch.utils.data import DataLoader
from colossalai.checkpoint_io import CheckpointIO
from colossalai.checkpoint_io import CheckpointIO, GeneralCheckpointIO
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.utils import get_current_device
from colossalai.zero import zero_model_wrapper, zero_optim_wrapper
@ -32,8 +32,17 @@ class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO):
"""
Save optimizer to checkpoint but only on master process.
"""
# TODO(ver217): optimizer state dict is sharded
super().save_unsharded_optimizer(optimizer, checkpoint, gather_dtensor)
# TODO(ver217): optimizer state dict is sharded, and cannot get full state dict now
warnings.warn(
'LowLevelZeroPlugin does not support save full optimizer checkpoint now. Save it on every process.')
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
GeneralCheckpointIO.save_unsharded_optimizer(self, optimizer, checkpoint, gather_dtensor)
def load_optimizer(self, optimizer: Optimizer, checkpoint: str):
warnings.warn(
'LowLevelZeroPlugin can only load optimizer checkpoint saved by itself with the same number of processes.')
checkpoint = f'{checkpoint}.rank{self.coordinator.rank}'
super().load_optimizer(optimizer, checkpoint)
class LowLevelZeroModel(ModelWrapper):

View File

@ -1,87 +1,95 @@
import tempfile
import os
import pytest
import torch
import torch.distributed as dist
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import check_state_dict_equal, parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext, ZeroDDP
from colossalai.zero import ZeroDDP
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
from colossalai.zero.gemini.gemini_mgr import GeminiManager
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.kit.model_zoo import model_zoo
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('model_name', ['bert'])
@parameterize('use_safetensors', [True, False])
@parameterize('model_name', ['transformers_bert_for_sequence_classification'])
@parameterize('use_safetensors', [False, True])
def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool):
from transformers import BertForSequenceClassification
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
bert_model = model_fn()
model_ckpt_dir = tempfile.TemporaryDirectory()
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, *_ = get_components_func()
with ColoInitContext(device=(get_current_device())):
bert_model = model_builder()
bert_model.config.save_pretrained(save_directory=(model_ckpt_dir.name))
with shared_tempdir() as tempdir:
pretrained_path = os.path.join(tempdir, 'pretrained')
bert_model.config.save_pretrained(save_directory=pretrained_path)
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
chunk_manager = ChunkManager(config_dict)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
bert_model = ZeroDDP(bert_model, gemini_manager)
bert_model.train()
# TODO(ver217): use boost api
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
chunk_manager = ChunkManager(config_dict)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
bert_model = ZeroDDP(bert_model, gemini_manager)
bert_model.train()
ckpt_io = GeminiCheckpointIO()
if ckpt_io.coordinator.is_master():
ckpt_io = GeminiCheckpointIO()
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
ckpt_io.save_model(bert_model, (model_ckpt_dir.name),
ckpt_io.save_model(bert_model, (pretrained_path),
True,
True,
'', (model_size / 3),
use_safetensors=use_safetensors)
new_bert_model = BertForSequenceClassification.from_pretrained(model_ckpt_dir.name)
check_state_dict_equal(bert_model.state_dict(only_rank_0=True, dtype=(torch.float32)),
dist.barrier()
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path)
check_state_dict_equal(bert_model.state_dict(only_rank_0=False, dtype=torch.float32),
new_bert_model.state_dict(), False)
model_ckpt_dir.cleanup()
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('model_name', ['gpt2', 'bert'])
@parameterize('use_safetensors', [True, False])
def exam_state_dict(placement_policy, model_name: str, use_safetensors: bool):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, *_ = get_components_func()
with ColoInitContext(device=(get_current_device())):
model = model_builder()
new_model = model_builder()
config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
chunk_manager = ChunkManager(config_dict)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager)
@parameterize('shard', [True, False])
@parameterize('model_name', ['transformers_gpt'])
def exam_state_dict(placement_policy, shard: bool, model_name: str):
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = lambda x: x.mean()
plugin = GeminiPlugin(placement_policy=placement_policy)
booster = Booster(plugin=plugin)
model.train()
#new model
new_config_dict, *_ = search_chunk_configuration(new_model, search_range_mb=1, search_interval_byte=100)
new_chunk_manager = ChunkManager(new_config_dict)
new_gemini_manager = GeminiManager(placement_policy, new_chunk_manager)
new_model = ZeroDDP(new_model, new_gemini_manager)
model = model_fn()
new_model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=0.001)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001)
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
model_ckpt_dir = tempfile.TemporaryDirectory()
ckpt_io = GeminiCheckpointIO()
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
ckpt_io.save_model(model, (model_ckpt_dir.name),
True,
True,
'epoch', (model_size / 3),
use_safetensors=use_safetensors)
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
if ckpt_io.coordinator.is_master():
ckpt_io.load_model(new_model, (model_ckpt_dir.name), strict=True)
model_dict = model.state_dict(only_rank_0=True)
new_model_dict = new_model.state_dict(only_rank_0=True)
check_state_dict_equal(model_dict, new_model_dict, False)
model_ckpt_dir.cleanup()
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_model(model, model_ckpt_path)
if not shard:
# TODO(ver217): optimizer checkpointing is not supported for sharded checkpoint
booster.save_optimizer(optimizer, optimizer_ckpt_path)
dist.barrier()
booster.load_model(new_model, model_ckpt_path)
check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False),
new_model.unwrap().state_dict(only_rank_0=False), False)
if not shard:
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False)
def run_dist(rank, world_size, port):
@ -92,7 +100,7 @@ def run_dist(rank, world_size, port):
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [4, 4])
@pytest.mark.parametrize('world_size', [2])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)

View File

@ -1,13 +1,11 @@
import tempfile
import pytest
import torch
import torch.distributed as dist
from torchvision.models import resnet18
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroCheckpointIO
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import (
check_state_dict_equal,
@ -20,7 +18,8 @@ from colossalai.testing import (
@clear_cache_before_run()
@parameterize('stage', [2])
def check_low_level_zero_checkpointIO(stage: int):
@parameterize('shard', [True, False])
def check_low_level_zero_checkpointIO(stage: int, shard: bool):
plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=32)
booster = Booster(plugin=plugin)
model = resnet18()
@ -34,17 +33,25 @@ def check_low_level_zero_checkpointIO(stage: int):
loss = criterion(output)
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
# lr scheduler is tested in test_torch_ddp_checkpoint_io.py and low level zero does not change it, we can skip it here
booster.save_model(model, model_ckpt_path, shard=shard)
if not shard:
# TODO(ver217): optimizer checkpointing is not supported for sharded checkpoint
booster.save_optimizer(optimizer, optimizer_ckpt_path)
dist.barrier()
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
ckpt_io = LowLevelZeroCheckpointIO()
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
new_model = resnet18()
new_optimizer = HybridAdam((new_model.parameters()), lr=0.001)
new_model, new_optimizer, _, _, _ = booster.boost(new_model, new_optimizer)
new_model = resnet18()
new_optimizer = HybridAdam((new_model.parameters()), lr=0.001)
_, new_optimizer, _, _, _ = booster.boost(new_model, new_optimizer)
if ckpt_io.coordinator.is_master():
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False)
booster.load_model(new_model, model_ckpt_path)
check_state_dict_equal(model.state_dict(), new_model.state_dict(), False)
if not shard:
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False)
def run_dist(rank, world_size, port):

View File

@ -1,10 +1,9 @@
import tempfile
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD
from torchvision.models import resnet18
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
@ -35,11 +34,7 @@ def check_torch_ddp_checkpointIO(shard: bool):
optimizer.step()
scheduler.step()
with tempfile.TemporaryDirectory() as tempdir:
obj = [tempdir]
dist.broadcast_object_list(obj, src=0)
tempdir = obj[0] # use the same directory on all ranks
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
lr_scheduler_ckpt_path = f"{tempdir}/lr_scheduler"
@ -66,8 +61,6 @@ def check_torch_ddp_checkpointIO(shard: bool):
booster.load_lr_scheduler(new_scheduler, lr_scheduler_ckpt_path)
check_state_dict_equal(scheduler.state_dict(), new_scheduler.state_dict(), False)
dist.barrier()
def run_dist(rank, world_size, port):
colossalai.launch(config=(dict()), rank=rank, world_size=world_size, port=port, host='localhost')

View File

@ -0,0 +1,21 @@
import tempfile
from contextlib import contextmanager, nullcontext
from typing import Iterator
import torch.distributed as dist
@contextmanager
def shared_tempdir() -> Iterator[str]:
"""
A temporary directory that is shared across all processes.
"""
ctx_fn = tempfile.TemporaryDirectory if dist.get_rank() == 0 else nullcontext
with ctx_fn() as tempdir:
try:
obj = [tempdir]
dist.broadcast_object_list(obj, src=0)
tempdir = obj[0] # use the same directory on all ranks
yield tempdir
finally:
dist.barrier()