[fx] add vanilla activation checkpoint search with test on resnet and densenet (#1433)

* [fx] activation checkpointing using Chen strategies.

* [fx] add test for ckpt_solver_chen

* [fx] add vanilla activation checkpoint search with test on resnet and densenet

* [fx] add vanilla activation checkpoint search with test on resnet and densenet

* [fx] add a namespace code for solver_chen.
pull/1441/head
Super Daniel 2022-08-11 15:46:39 +08:00 committed by GitHub
parent 30b4dd17c0
commit 3b26516c69
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 103 additions and 0 deletions

View File

@ -0,0 +1 @@
from .ckpt_solver_chen import chen_greedy, chen_sqrtn

View File

@ -0,0 +1,62 @@
import torch
from torch.fx import GraphModule
__all__ = ['chen_greedy', 'chen_sqrtn']
def chen_greedy(gm: GraphModule, B: int):
"""
This is the simple implementation of Algorithm 3 in https://arxiv.org/abs/1604.06174.
Usage:
B = 5 * 1024 * 1024 * 1024 # An approximate memory budget of 5GB
model = resnet18()
input_sample = torch.rand(4, 3, 224, 224)
gm = symbolic_trace(model)
MetaInfoProp(gm).run(input_sample)
gm = chen_greedy(gm, B)
Args:
gm (GraphModule): The module to add checkpoints
B (int): The approximate memory budget for this module.
"""
gm.graph.lint() # make sure nodes are in topological order
temp = 0
x = 0
idx = 0
budget = B
for n in gm.graph.nodes:
B -= getattr(n, 'param_size')
assert B > 0, f'The memory budget {budget / 1024 ** 3:.2f} GB is not enough for model parameters of {gm}'
for n in gm.graph.nodes:
temp += getattr(n, 'activation_size')
if temp > B:
x += getattr(n, 'activation_size')
temp = x
setattr(n, 'activation_checkpoint', str(idx))
idx += 1
gm.recompile()
return gm
def chen_sqrtn(gm: GraphModule):
"""
This is the theoretical optimal strategy in https://arxiv.org/abs/1604.06174.
Usage:
model = resnet18()
input_sample = torch.rand(4, 3, 224, 224)
gm = symbolic_trace(model)
MetaInfoProp(gm).run(input_sample)
gm = chen_sqrtn(gm)
Args:
gm (GraphModule): The module to add checkpoints
"""
gm.graph.lint() # make sure nodes are in topological order
k = int(len(gm.graph.nodes)**0.5) # take approximately sqrt(n) checkpoints
for idx, n in enumerate(gm.graph.nodes):
if (idx + 1) % k == 0:
setattr(n, 'activation_checkpoint', str((idx + 1) // k))
gm.recompile()
return gm

View File

@ -0,0 +1,40 @@
from colossalai.fx.passes.algorithms import chen_greedy, chen_sqrtn
import torch
import torchvision.models as tm
from colossalai.fx import ColoTracer
from torch.fx import GraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from functools import partial
import pytest
SOLVERS = [partial(chen_greedy, B=1024 * 1024 * 64), chen_sqrtn]
def _is_activation_checkpoint_available(gm: GraphModule):
for n in gm.graph.nodes:
if hasattr(n, 'activation_checkpoint') and getattr(n, 'activation_checkpoint') is not None:
return True
def test_ckpt_solver():
MODEL_LIST = [tm.resnet18, tm.densenet121]
torch.backends.cudnn.deterministic = True
tracer = ColoTracer()
data = torch.rand(1, 3, 224, 224)
for solver in SOLVERS:
for model_cls in MODEL_LIST:
model = model_cls()
graph = tracer.trace(root=model)
gm = GraphModule(model, graph, model.__class__.__name__)
MetaInfoProp(gm).run(data)
gm = solver(gm)
assert _is_activation_checkpoint_available(
gm), f"Solver {solver} did not annotate {model_cls} with any activation checkpoints"
assert torch.allclose(gm(data), model(data))
if __name__ == '__main__':
test_ckpt_solver()