[autoparallel] record parameter attribute in colotracer (#2217)

* [autoparallel] record parameter attribute in collotracer

* [autoparallel] fix construct_meta_info bug
pull/2226/head
YuliangLiu0306 2022-12-28 19:29:08 +08:00 committed by GitHub
parent 92de90dfb3
commit 3b1b91eaf4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 43 additions and 16 deletions

View File

@ -174,8 +174,8 @@ def _shape_consistency_apply(gm: torch.fx.GraphModule):
runtime_apply,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
meta_info = construct_meta_info(node, user_node)
setattr(shape_consistency_node, 'best_metainfo', meta_info)
# meta_info = construct_meta_info(node, user_node)
# setattr(shape_consistency_node, 'best_metainfo', meta_info)
new_args = list(user_node.args)
new_kwargs = dict(user_node.kwargs)

View File

@ -229,6 +229,15 @@ class ColoTracer(Tracer):
args_metas, kwargs_metas = extract_meta(*args, **kwargs)
if kind == "call_function":
# Our meta data will not record the nn.parameter.Parameter attribute。
# It works fine in most of the case, but it may cause some problems after
# the bias addition manipulation.
# Therefore, I need to record the nn.parameter.Parameter attribute for the operation
# added by the bias addition manipulation following the get_attr node.
convert_to_parameter = False
if target in (torch.transpose, torch.reshape) and isinstance(args_metas[0],
torch.nn.parameter.Parameter):
convert_to_parameter = True
# fetch patched function
if meta_patched_function.has(target):
meta_target = meta_patched_function.get(target)
@ -241,7 +250,18 @@ class ColoTracer(Tracer):
meta_out = meta_target(*args_metas, **kwargs_metas)
if isinstance(meta_out, torch.Tensor):
meta_out = meta_out.to(device="meta")
if convert_to_parameter:
meta_out = torch.nn.Parameter(meta_out)
elif kind == "call_method":
# Our meta data will not record the nn.parameter.Parameter attribute。
# It works fine in most of the case, but it may cause some problems after
# the bias addition manipulation.
# Therefore, I need to record the nn.parameter.Parameter attribute for the operation
# added by the bias addition manipulation following the get_attr node.
convert_to_parameter = False
if target in (torch.Tensor.view,) and isinstance(args_metas[0], torch.nn.parameter.Parameter):
convert_to_parameter = True
method = getattr(args_metas[0].__class__, target)
# fetch patched method
@ -251,6 +271,8 @@ class ColoTracer(Tracer):
meta_target = method
meta_out = meta_target(*args_metas, **kwargs_metas)
if convert_to_parameter:
meta_out = torch.nn.Parameter(meta_out)
elif kind == "call_module":
if not hasattr(self, "orig_forward"):
raise AttributeError(f"{self} does not have an attribute called orig_forward")

View File

@ -35,13 +35,14 @@ from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_gpt.gpt_modules import GPT2LMHeadModel, GPTLMLoss
BATCH_SIZE = 128
SEQ_LENGTH = 128
HIDDEN_DIM = 4096
NUM_HEADS = 32
BATCH_SIZE = 32
SEQ_LENGTH = 256
HIDDEN_DIM = 16384
NUM_HEADS = 128
NUM_LAYERS = 4
VOCAB_SIZE = 50257
NUM_STEPS = 10
FP16 = True
def get_cpu_mem():
@ -57,7 +58,8 @@ def get_mem_info(prefix=''):
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) / 4
# Randomly Generated Data
@ -72,8 +74,11 @@ def main():
launch_from_torch(config={})
logger = get_dist_logger()
config = transformers.GPT2Config(n_position=SEQ_LENGTH, n_layer=NUM_LAYERS, n_head=NUM_HEADS, n_embd=HIDDEN_DIM)
model = GPT2LMHeadModel(config=config).to('cuda')
if FP16:
model = GPT2LMHeadModel(config=config).half().to('cuda')
else:
model = GPT2LMHeadModel(config=config).to('cuda')
global_numel = sum([p.numel() for p in model.parameters()])
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
@ -108,6 +113,7 @@ def main():
ret = solver.call_solver_serialized_args()
solution = list(ret[0])
# solution = [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 13, 8, 9, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 8, 8, 8, 0, 0, 20, 12, 12, 12, 6, 6, 6, 6, 2, 6, 0, 0, 4, 0, 0, 0, 4, 0, 4, 3, 3, 12, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 3, 8, 2, 2, 11, 4, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 8, 8, 8, 0, 0, 20, 12, 12, 12, 6, 6, 6, 6, 2, 6, 0, 0, 4, 0, 0, 0, 4, 0, 4, 3, 3, 12, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 3, 8, 2, 2, 11, 4, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 8, 8, 8, 0, 0, 20, 12, 12, 12, 6, 6, 6, 6, 2, 6, 0, 0, 4, 0, 0, 0, 4, 0, 4, 3, 3, 12, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 3, 8, 2, 2, 11, 4, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 8, 8, 8, 0, 0, 20, 12, 12, 12, 6, 6, 6, 6, 2, 6, 0, 0, 4, 0, 0, 0, 4, 0, 4, 3, 3, 12, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8, 3, 8, 2, 2, 11, 4, 4, 9, 0, 0, 8, 0]
print(solution)
gm, sharding_spec_dict, origin_spec_dict, comm_actions_dict = runtime_preparation_pass(
gm, solution, device_mesh, strategies_constructor)
@ -125,9 +131,8 @@ def main():
criterion = GPTLMLoss()
optimizer = torch.optim.Adam(gm.parameters(), lr=0.01)
numel = sum([p.numel() for p in model.parameters()])
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LENGTH)
get_tflops_func = partial(get_tflops, global_numel, BATCH_SIZE, SEQ_LENGTH)
torch.cuda.synchronize()
model.train()
# with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],

View File

@ -102,13 +102,11 @@ def check_attention_layer(rank, model_cls, world_size, port):
else:
input_sample = (
input_ids.to('cuda'),
token_type_ids.to('cuda'),
attention_mask.to('cuda'),
)
test_input_sample = copy.deepcopy(input_sample)
meta_input_sample = {
'input_ids': input_ids.to('meta'),
'token_type_ids': token_type_ids.to('meta'),
'attention_mask': attention_mask.to('meta'),
}

View File

@ -50,9 +50,8 @@ def test_self_attention_block(model_cls):
}
else:
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
input_sample = {k: v.to('meta') for k, v in kwargs.items()}
graph = tracer.trace(root=model, meta_args=input_sample)

View File

@ -130,7 +130,10 @@ def check_addmm_function_handler(rank, input_shape, model_cls, world_size, port)
assert mapping['other'].name == "transpose"
assert mapping['other'].data.shape == torch.Size([16, 8])
assert mapping['other'].type == OperationDataType.ARG
if model_cls == AddmmModel:
assert mapping['other'].type == OperationDataType.ARG
else:
assert mapping['other'].type == OperationDataType.PARAM
assert mapping['other'].logical_shape == torch.Size([8, 16])
assert mapping['output'].name == "linear"