mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] fix lr scheduler bug in torch 2.0 (#4864)
parent
83b52c56cd
commit
39f2582e98
|
@ -1,4 +1,10 @@
|
||||||
from torch.optim.lr_scheduler import _LRScheduler
|
import torch
|
||||||
|
from packaging.version import Version
|
||||||
|
|
||||||
|
if Version(torch.__version__) >= Version("2.0.0"):
|
||||||
|
from torch.optim.lr_scheduler import LRScheduler as _LRScheduler
|
||||||
|
else:
|
||||||
|
from torch.optim.lr_scheduler import _LRScheduler
|
||||||
|
|
||||||
|
|
||||||
class _enable_get_lr_call:
|
class _enable_get_lr_call:
|
||||||
|
|
|
@ -6,6 +6,7 @@ from torch.optim import Adam
|
||||||
from torchvision.models import resnet18
|
from torchvision.models import resnet18
|
||||||
|
|
||||||
from colossalai.checkpoint_io import GeneralCheckpointIO
|
from colossalai.checkpoint_io import GeneralCheckpointIO
|
||||||
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
||||||
from colossalai.testing import check_state_dict_equal, clear_cache_before_run, parameterize
|
from colossalai.testing import check_state_dict_equal, clear_cache_before_run, parameterize
|
||||||
|
|
||||||
# ========
|
# ========
|
||||||
|
@ -22,6 +23,7 @@ def test_unsharded_checkpoint(use_safetensors: bool):
|
||||||
# create a model and optimizer
|
# create a model and optimizer
|
||||||
model = resnet18()
|
model = resnet18()
|
||||||
optimizer = Adam(model.parameters(), lr=0.001)
|
optimizer = Adam(model.parameters(), lr=0.001)
|
||||||
|
lr_scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=10)
|
||||||
|
|
||||||
# create test data sample
|
# create test data sample
|
||||||
x = torch.randn(1, 3, 224, 224)
|
x = torch.randn(1, 3, 224, 224)
|
||||||
|
@ -31,6 +33,7 @@ def test_unsharded_checkpoint(use_safetensors: bool):
|
||||||
loss = y.sum()
|
loss = y.sum()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
lr_scheduler.step()
|
||||||
|
|
||||||
# create a temp file for checkpoint
|
# create a temp file for checkpoint
|
||||||
if use_safetensors:
|
if use_safetensors:
|
||||||
|
@ -39,19 +42,23 @@ def test_unsharded_checkpoint(use_safetensors: bool):
|
||||||
suffix = ".bin"
|
suffix = ".bin"
|
||||||
model_ckpt_tempfile = tempfile.NamedTemporaryFile(suffix=suffix)
|
model_ckpt_tempfile = tempfile.NamedTemporaryFile(suffix=suffix)
|
||||||
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||||
|
lr_scheduler_ckpt_tempfile = tempfile.NamedTemporaryFile()
|
||||||
|
|
||||||
# save the model and optimizer
|
# save the model, optimizer, lr_scheduler
|
||||||
ckpt_io = GeneralCheckpointIO()
|
ckpt_io = GeneralCheckpointIO()
|
||||||
ckpt_io.save_model(model, model_ckpt_tempfile.name, use_safetensors=use_safetensors)
|
ckpt_io.save_model(model, model_ckpt_tempfile.name, use_safetensors=use_safetensors)
|
||||||
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
ckpt_io.save_optimizer(optimizer, optimizer_ckpt_tempfile.name)
|
||||||
|
ckpt_io.save_lr_scheduler(lr_scheduler, lr_scheduler_ckpt_tempfile.name)
|
||||||
|
|
||||||
# create new model
|
# create new model
|
||||||
new_model = resnet18()
|
new_model = resnet18()
|
||||||
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
new_optimizer = Adam(new_model.parameters(), lr=0.001)
|
||||||
|
new_lr_scheduler = CosineAnnealingWarmupLR(optimizer, total_steps=10)
|
||||||
|
|
||||||
# load the model and optimizer
|
# load the model, optimizer, lr_scheduler
|
||||||
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
|
ckpt_io.load_model(new_model, model_ckpt_tempfile.name)
|
||||||
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
ckpt_io.load_optimizer(new_optimizer, optimizer_ckpt_tempfile.name)
|
||||||
|
ckpt_io.load_lr_scheduler(new_lr_scheduler, lr_scheduler_ckpt_tempfile.name)
|
||||||
|
|
||||||
# check for model and optimizer state dict recursively
|
# check for model and optimizer state dict recursively
|
||||||
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
check_state_dict_equal(model.state_dict(), new_model.state_dict())
|
||||||
|
|
|
@ -72,6 +72,7 @@ def run_dist(rank, world_size, port):
|
||||||
exam_zero_optim_state_dict()
|
exam_zero_optim_state_dict()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skip
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize("world_size", [1, 4])
|
@pytest.mark.parametrize("world_size", [1, 4])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
|
|
Loading…
Reference in New Issue