Merge pull request #6061 from wangbluo/sp_fix

[sp] : fix the attention kernel for sp
pull/6064/head
Wang Binluo 2024-09-14 20:54:35 +08:00 committed by GitHub
commit 37e35230ff
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 42 additions and 10 deletions

View File

@ -119,6 +119,10 @@ class FlashAttentionLoader(KernelLoader):
] ]
class FlashAttentionDaoLoader(KernelLoader):
REGISTRY = [FlashAttentionDaoCudaExtension]
class FlashAttentionWithCustomMaskLoader(KernelLoader): class FlashAttentionWithCustomMaskLoader(KernelLoader):
REGISTRY = [FlashAttentionNpuExtension, FlashAttentionSdpaCudaExtension] REGISTRY = [FlashAttentionNpuExtension, FlashAttentionSdpaCudaExtension]

View File

@ -8,6 +8,7 @@ import torch.nn.functional as F
from einops import rearrange from einops import rearrange
from colossalai.kernel.kernel_loader import ( from colossalai.kernel.kernel_loader import (
FlashAttentionDaoLoader,
FlashAttentionForFloatAndCustomMaskLoader, FlashAttentionForFloatAndCustomMaskLoader,
FlashAttentionLoader, FlashAttentionLoader,
FlashAttentionWithCustomMaskLoader, FlashAttentionWithCustomMaskLoader,
@ -17,6 +18,8 @@ from colossalai.logging import get_dist_logger
from .utils import RingComm, get_half_index, split_varlen_zigzag from .utils import RingComm, get_half_index, split_varlen_zigzag
MEMORY_BOUND = 10 * 1e9
__all__ = [ __all__ = [
"AttnMaskType", "AttnMaskType",
"ColoAttention", "ColoAttention",
@ -77,6 +80,7 @@ def get_pad_info(
class ColoAttention: class ColoAttention:
_kernel_dispatch_map: Optional[Dict[torch.dtype, Dict[Optional[AttnMaskType], Callable]]] = None _kernel_dispatch_map: Optional[Dict[torch.dtype, Dict[Optional[AttnMaskType], Callable]]] = None
_flash_kernel_dispatch: Optional[Dict[torch.dtype, Dict[Optional[AttnMaskType], Callable]]] = None
@staticmethod @staticmethod
def _init_kernels_dispatch(): def _init_kernels_dispatch():
@ -102,9 +106,11 @@ class ColoAttention:
torch.bfloat16: half_dispatch_map, torch.bfloat16: half_dispatch_map,
torch.float32: float_dispatch_map, torch.float32: float_dispatch_map,
} }
if ColoAttention._flash_kernel_dispatch is None:
ColoAttention._flash_kernel_dispatch = FlashAttentionDaoLoader()
@staticmethod @staticmethod
def _dispatch_kernel(dtype: torch.dtype, mask_type: Optional[AttnMaskType]) -> Callable: def _dispatch_kernel(dtype: torch.dtype, mask_type: Optional[AttnMaskType], size) -> Callable:
ColoAttention._init_kernels_dispatch() ColoAttention._init_kernels_dispatch()
if ( if (
dtype not in ColoAttention._kernel_dispatch_map dtype not in ColoAttention._kernel_dispatch_map
@ -113,12 +119,19 @@ class ColoAttention:
raise ValueError( raise ValueError(
"FlashAttention kernel is not available for dtype {} and mask_type {}".format(dtype, mask_type) "FlashAttention kernel is not available for dtype {} and mask_type {}".format(dtype, mask_type)
) )
if size >= MEMORY_BOUND:
ColoAttention._flash_kernel_dispatch = ColoAttention._flash_kernel_dispatch.load()
# lazy load # lazy load
if isinstance(ColoAttention._kernel_dispatch_map[dtype][mask_type], KernelLoader): if isinstance(ColoAttention._kernel_dispatch_map[dtype][mask_type], KernelLoader):
ColoAttention._kernel_dispatch_map[dtype][mask_type] = ColoAttention._kernel_dispatch_map[dtype][ ColoAttention._kernel_dispatch_map[dtype][mask_type] = ColoAttention._kernel_dispatch_map[dtype][
mask_type mask_type
].load() ].load()
return ColoAttention._kernel_dispatch_map[dtype][mask_type]
if size >= MEMORY_BOUND and mask_type in (AttnMaskType.PADDED_CAUSAL, AttnMaskType.CAUSAL):
return ColoAttention._flash_kernel_dispatch
else:
return ColoAttention._kernel_dispatch_map[dtype][mask_type]
@staticmethod @staticmethod
def prepare_attn_kwargs( def prepare_attn_kwargs(
@ -154,6 +167,8 @@ class ColoAttention:
return {} return {}
assert len(shape_4d) == 4 and shape_4d[1] == 1 assert len(shape_4d) == 4 and shape_4d[1] == 1
b, _, s_q, s_kv = shape_4d b, _, s_q, s_kv = shape_4d
element_size = torch.tensor([], dtype=dtype).element_size()
memory_size = s_q * s_kv * element_size
outputs = {} outputs = {}
if (q_padding_mask is None or q_padding_mask.bool().all()) and ( if (q_padding_mask is None or q_padding_mask.bool().all()) and (
kv_padding_mask is None or kv_padding_mask.bool().all() kv_padding_mask is None or kv_padding_mask.bool().all()
@ -161,10 +176,13 @@ class ColoAttention:
# no padding # no padding
assert is_causal assert is_causal
outputs["attention_mask_type"] = AttnMaskType.CAUSAL outputs["attention_mask_type"] = AttnMaskType.CAUSAL
attention_mask = torch.ones(s_q, s_kv, dtype=dtype, device=device) if memory_size < MEMORY_BOUND:
if s_q != 1: attention_mask = torch.ones(s_q, s_kv, dtype=dtype, device=device)
attention_mask = attention_mask.tril(diagonal=0) if s_q != 1:
attention_mask = attention_mask.expand(b, s_q, s_kv) attention_mask.tril_(diagonal=0)
attention_mask = attention_mask.expand(b, s_q, s_kv)
else:
attention_mask = torch.empty((0,), dtype=dtype, device=device)
else: else:
max_seqlen_q, cu_seqlens_q, q_indices = get_pad_info(q_padding_mask) max_seqlen_q, cu_seqlens_q, q_indices = get_pad_info(q_padding_mask)
if kv_padding_mask is None: if kv_padding_mask is None:
@ -177,7 +195,6 @@ class ColoAttention:
b, b,
s_kv, s_kv,
), f"Padding mask shape {kv_padding_mask.shape} should align with shape 4d ({b}, {s_kv})" ), f"Padding mask shape {kv_padding_mask.shape} should align with shape 4d ({b}, {s_kv})"
attention_mask = kv_padding_mask[:, None, :].expand(b, s_q, s_kv).to(dtype=dtype, device=device)
outputs.update( outputs.update(
{ {
"cu_seqlens_q": cu_seqlens_q, "cu_seqlens_q": cu_seqlens_q,
@ -190,10 +207,17 @@ class ColoAttention:
) )
if is_causal: if is_causal:
outputs["attention_mask_type"] = AttnMaskType.PADDED_CAUSAL outputs["attention_mask_type"] = AttnMaskType.PADDED_CAUSAL
if s_q != 1: if memory_size < MEMORY_BOUND:
attention_mask = attention_mask * attention_mask.new_ones(s_q, s_kv).tril(diagonal=0) if s_q != 1:
attention_mask = kv_padding_mask[:, None, :].expand(b, s_q, s_kv).to(dtype=dtype, device=device)
attention_mask = attention_mask * attention_mask.new_ones(s_q, s_kv).tril(diagonal=0)
else:
attention_mask = torch.empty((0,), dtype=dtype, device=device)
else: else:
outputs["attention_mask_type"] = AttnMaskType.PADDED outputs["attention_mask_type"] = AttnMaskType.PADDED
if memory_size < MEMORY_BOUND:
attention_mask = kv_padding_mask[:, None, :].expand(b, s_q, s_kv).to(dtype=dtype, device=device)
if invert: if invert:
attention_mask = invert_mask(attention_mask).unsqueeze(1) attention_mask = invert_mask(attention_mask).unsqueeze(1)
outputs["attention_mask"] = attention_mask outputs["attention_mask"] = attention_mask
@ -278,8 +302,12 @@ class ColoAttention:
assert attention_mask_type == AttnMaskType.CUSTOM assert attention_mask_type == AttnMaskType.CUSTOM
# kernel dispatch # kernel dispatch
b, _, s_q, _ = q.shape
b, _, s_kv, _ = v.shape
element_size = torch.tensor([], dtype=q.dtype).element_size()
memory_size = s_q * s_kv * element_size
mask_type = attention_mask_type if attention_mask is not None else None mask_type = attention_mask_type if attention_mask is not None else None
attn_func = ColoAttention._dispatch_kernel(q.dtype, mask_type) attn_func = ColoAttention._dispatch_kernel(q.dtype, mask_type, memory_size)
is_causal = attention_mask is not None and attention_mask_type in ( is_causal = attention_mask is not None and attention_mask_type in (
AttnMaskType.CAUSAL, AttnMaskType.CAUSAL,
AttnMaskType.PADDED_CAUSAL, AttnMaskType.PADDED_CAUSAL,