mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] refactor handlers which reshape input tensors (#2615)
* [autoparallel] refactor handlers which reshape input tensors * polishpull/2664/head
parent
28398f1c70
commit
37df666f38
|
@ -3,8 +3,8 @@ from .batch_norm_handler import BatchNormModuleHandler
|
||||||
from .binary_elementwise_handler import BinaryElementwiseHandler
|
from .binary_elementwise_handler import BinaryElementwiseHandler
|
||||||
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
|
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
|
||||||
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
|
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
|
||||||
|
from .default_reshape_handler import DefaultReshapeHandler
|
||||||
from .embedding_handler import EmbeddingFunctionHandler, EmbeddingModuleHandler
|
from .embedding_handler import EmbeddingFunctionHandler, EmbeddingModuleHandler
|
||||||
from .experimental import PermuteHandler, ViewHandler
|
|
||||||
from .getattr_handler import GetattrHandler
|
from .getattr_handler import GetattrHandler
|
||||||
from .getitem_handler import GetItemHandler
|
from .getitem_handler import GetItemHandler
|
||||||
from .layer_norm_handler import LayerNormModuleHandler
|
from .layer_norm_handler import LayerNormModuleHandler
|
||||||
|
@ -13,20 +13,24 @@ from .matmul_handler import MatMulHandler
|
||||||
from .normal_pooling_handler import NormPoolingHandler
|
from .normal_pooling_handler import NormPoolingHandler
|
||||||
from .option import ShardOption
|
from .option import ShardOption
|
||||||
from .output_handler import OutputHandler
|
from .output_handler import OutputHandler
|
||||||
|
from .permute_handler import PermuteHandler
|
||||||
from .placeholder_handler import PlaceholderHandler
|
from .placeholder_handler import PlaceholderHandler
|
||||||
from .registry import operator_registry
|
from .registry import operator_registry
|
||||||
from .reshape_handler import ReshapeHandler
|
|
||||||
from .softmax_handler import SoftmaxHandler
|
from .softmax_handler import SoftmaxHandler
|
||||||
|
from .split_handler import SplitHandler
|
||||||
from .sum_handler import SumHandler
|
from .sum_handler import SumHandler
|
||||||
from .tensor_constructor_handler import TensorConstructorHandler
|
from .tensor_constructor_handler import TensorConstructorHandler
|
||||||
|
from .transpose_handler import TransposeHandler
|
||||||
from .unary_elementwise_handler import UnaryElementwiseHandler
|
from .unary_elementwise_handler import UnaryElementwiseHandler
|
||||||
|
from .view_handler import ViewHandler
|
||||||
from .where_handler import WhereHandler
|
from .where_handler import WhereHandler
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'LinearFunctionHandler', 'LinearModuleHandler', 'BMMFunctionHandler', 'AddBMMFunctionHandler',
|
'LinearFunctionHandler', 'LinearModuleHandler', 'BMMFunctionHandler', 'AddBMMFunctionHandler',
|
||||||
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
|
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
|
||||||
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlaceholderHandler', 'OutputHandler', 'WhereHandler',
|
'UnaryElementwiseHandler', 'DefaultReshapeHandler', 'PlaceholderHandler', 'OutputHandler', 'WhereHandler',
|
||||||
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler',
|
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler',
|
||||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler',
|
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler',
|
||||||
'EmbeddingModuleHandler', 'EmbeddingFunctionHandler', 'SumHandler', 'SoftmaxHandler', 'ShardOption'
|
'EmbeddingModuleHandler', 'EmbeddingFunctionHandler', 'SumHandler', 'SoftmaxHandler', 'ShardOption',
|
||||||
|
'TransposeHandler', 'SplitHandler'
|
||||||
]
|
]
|
||||||
|
|
|
@ -5,23 +5,23 @@ import torch
|
||||||
from ..sharding_strategy import OperationData, OperationDataType
|
from ..sharding_strategy import OperationData, OperationDataType
|
||||||
from .node_handler import MetaInfoNodeHandler, NodeHandler
|
from .node_handler import MetaInfoNodeHandler, NodeHandler
|
||||||
from .registry import operator_registry
|
from .registry import operator_registry
|
||||||
from .strategy import ReshapeGenerator, StrategyGenerator
|
from .strategy import DefaultReshapeGenerator, StrategyGenerator
|
||||||
|
|
||||||
__all__ = ['ReshapeHandler']
|
__all__ = ['DefaultReshapeHandler']
|
||||||
|
|
||||||
|
|
||||||
@operator_registry.register(torch.flatten)
|
@operator_registry.register(torch.flatten)
|
||||||
@operator_registry.register(torch.Tensor.unsqueeze)
|
@operator_registry.register(torch.Tensor.unsqueeze)
|
||||||
@operator_registry.register(torch.nn.AdaptiveAvgPool2d)
|
@operator_registry.register(torch.nn.AdaptiveAvgPool2d)
|
||||||
class ReshapeHandler(MetaInfoNodeHandler):
|
class DefaultReshapeHandler(MetaInfoNodeHandler):
|
||||||
"""
|
"""
|
||||||
A ReshapeHandler which deals with the sharding strategies for Reshape Op, such as torch.reshape.
|
A DefaultReshapeHandler which deals with the sharding strategies for Reshape Op, such as torch.reshape.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||||
op_data_mapping = self.get_operation_data_mapping()
|
op_data_mapping = self.get_operation_data_mapping()
|
||||||
generators = []
|
generators = []
|
||||||
generators.append(ReshapeGenerator(op_data_mapping, self.device_mesh, self.node.args[0]))
|
generators.append(DefaultReshapeGenerator(op_data_mapping, self.device_mesh, self.node.args[0]))
|
||||||
return generators
|
return generators
|
||||||
|
|
||||||
def infer_logical_shape(self, data):
|
def infer_logical_shape(self, data):
|
|
@ -1,10 +0,0 @@
|
||||||
from .permute_handler import PermuteHandler
|
|
||||||
from .reshape_generator import PermuteGenerator, SplitGenerator, TransposeGenerator, ViewGenerator
|
|
||||||
from .split_handler import SplitHandler
|
|
||||||
from .transpose_handler import TransposeHandler
|
|
||||||
from .view_handler import ViewHandler
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
'ViewGenerator', 'ViewHandler', 'PermuteGenerator', 'PermuteHandler', 'TransposeGenerator', 'TransposeGenerator',
|
|
||||||
'SplitHandler', 'SplitGenerator'
|
|
||||||
]
|
|
|
@ -1,299 +0,0 @@
|
||||||
import copy
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.strategy.strategy_generator import FollowingStrategyGenerator
|
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
|
||||||
CommAction,
|
|
||||||
CommType,
|
|
||||||
MemoryCost,
|
|
||||||
ShardingStrategy,
|
|
||||||
TrainCycleItem,
|
|
||||||
)
|
|
||||||
from colossalai.auto_parallel.tensor_shard.utils import (
|
|
||||||
check_keep_sharding_status,
|
|
||||||
detect_reshape_mapping,
|
|
||||||
infer_output_dim_partition_dict,
|
|
||||||
)
|
|
||||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
|
||||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
||||||
|
|
||||||
__all__ = ['ReshapeGenerator', 'ViewGenerator', 'PermuteGenerator', 'TransposeGenerator', 'SplitGenerator']
|
|
||||||
|
|
||||||
|
|
||||||
class ReshapeGenerator(FollowingStrategyGenerator):
|
|
||||||
"""
|
|
||||||
ReshapeGenerator is the base class for all the reshape operation.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def validate(self) -> bool:
|
|
||||||
return super().validate()
|
|
||||||
|
|
||||||
def update_compute_cost(self, strategy: ShardingStrategy):
|
|
||||||
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
|
|
||||||
strategy.compute_cost = compute_cost
|
|
||||||
|
|
||||||
def update_memory_cost(self, strategy: ShardingStrategy):
|
|
||||||
'''
|
|
||||||
Compute the memory cost per device with this specific strategy.
|
|
||||||
'''
|
|
||||||
forward_size_mapping = {
|
|
||||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
|
||||||
'output': self._compute_size_in_bytes(strategy, "output")
|
|
||||||
}
|
|
||||||
|
|
||||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
|
||||||
backward_size_mapping.pop("output")
|
|
||||||
# compute fwd cost incurred
|
|
||||||
# fwd_cost = input + output
|
|
||||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
|
||||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
|
||||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
|
||||||
|
|
||||||
# compute bwd cost incurred
|
|
||||||
# bwd_cost = input_grad
|
|
||||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
|
||||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
|
||||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
|
||||||
|
|
||||||
# compute total cost
|
|
||||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
|
||||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
|
||||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
|
||||||
strategy.memory_cost = memory_cost
|
|
||||||
|
|
||||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
|
||||||
return super().collate_strategies()
|
|
||||||
|
|
||||||
|
|
||||||
class ViewGenerator(ReshapeGenerator):
|
|
||||||
"""
|
|
||||||
ViewGenerator deals with the sharding strategies of view op.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
|
||||||
strategy_list = []
|
|
||||||
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
|
||||||
dim_partition_dict_mapping = {}
|
|
||||||
communication_action_mapping = {}
|
|
||||||
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
|
||||||
|
|
||||||
origin_shape = self.op_data['input'].data.shape
|
|
||||||
tgt_shape = self.op_data['tgt_shape'].data
|
|
||||||
|
|
||||||
reshape_mapping_dict = detect_reshape_mapping(origin_shape, tgt_shape)
|
|
||||||
|
|
||||||
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
|
|
||||||
keep_sharding_status = check_keep_sharding_status(dim_partition_dict_for_input, reshape_mapping_dict)
|
|
||||||
|
|
||||||
if keep_sharding_status:
|
|
||||||
dim_partition_dict_for_output = infer_output_dim_partition_dict(dim_partition_dict_for_input,
|
|
||||||
reshape_mapping_dict)
|
|
||||||
else:
|
|
||||||
dim_partition_dict_for_output = {}
|
|
||||||
|
|
||||||
dim_partition_dict_mapping = {
|
|
||||||
"input": dim_partition_dict_for_input,
|
|
||||||
"output": dim_partition_dict_for_output,
|
|
||||||
}
|
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
|
||||||
|
|
||||||
# add index into name to pass the duplicated check
|
|
||||||
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
|
||||||
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
|
||||||
if keep_sharding_status:
|
|
||||||
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
|
|
||||||
else:
|
|
||||||
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> FULLY REPLICATED_{index}'
|
|
||||||
|
|
||||||
# add comm action for converting input to fully replicated
|
|
||||||
total_mesh_dim_list = []
|
|
||||||
for mesh_dim_list in dim_partition_dict_for_input.values():
|
|
||||||
total_mesh_dim_list.extend(mesh_dim_list)
|
|
||||||
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
|
||||||
if len(total_mesh_dim_list) == 1:
|
|
||||||
total_mesh_dim_list = total_mesh_dim_list[0]
|
|
||||||
# the total mesh dim list only has one element, so the shard dim has only one element as well.
|
|
||||||
shard_dim = list(dim_partition_dict_for_input.keys())[0]
|
|
||||||
input_comm_action = self.get_communication_action(
|
|
||||||
sharding_spec=sharding_spec_mapping["input"],
|
|
||||||
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
||||||
logical_process_axis=total_mesh_dim_list,
|
|
||||||
comm_type=CommType.BEFORE,
|
|
||||||
arg_index=0)
|
|
||||||
# it will gather the input through gather_dim during forward phase.
|
|
||||||
input_comm_action.comm_spec.gather_dim = shard_dim
|
|
||||||
# it will split the input activation grad through shard_dim during backward phase.
|
|
||||||
input_comm_action.comm_spec.shard_dim = shard_dim
|
|
||||||
|
|
||||||
elif len(total_mesh_dim_list) >= 2:
|
|
||||||
source_spec = sharding_spec_mapping["input"]
|
|
||||||
target_spec = ShardingSpec(device_mesh=self.device_mesh,
|
|
||||||
entire_shape=source_spec.entire_shape,
|
|
||||||
dim_partition_dict={})
|
|
||||||
comm_spec = {'src_spec': source_spec, 'tgt_spec': target_spec}
|
|
||||||
input_comm_action = CommAction(comm_spec=comm_spec, comm_type=CommType.BEFORE, arg_index=0)
|
|
||||||
|
|
||||||
else:
|
|
||||||
input_comm_action = None
|
|
||||||
|
|
||||||
if input_comm_action is not None:
|
|
||||||
communication_action_mapping["input"] = input_comm_action
|
|
||||||
|
|
||||||
strategy = self.get_sharding_strategy(name=name,
|
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
|
||||||
communication_action_mapping=communication_action_mapping)
|
|
||||||
strategy_list.append(strategy)
|
|
||||||
|
|
||||||
return strategy_list
|
|
||||||
|
|
||||||
|
|
||||||
class PermuteGenerator(ReshapeGenerator):
|
|
||||||
"""
|
|
||||||
PermuteGenerator deals with the sharding strategies of permute op.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
|
||||||
strategy_list = []
|
|
||||||
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
|
||||||
dim_partition_dict_mapping = {}
|
|
||||||
communication_action_mapping = {}
|
|
||||||
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
|
||||||
|
|
||||||
permute_dims = self.op_data['permute_dims'].data
|
|
||||||
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
|
|
||||||
dim_partition_dict_for_output = {}
|
|
||||||
for dim_index, permute_dim in enumerate(permute_dims):
|
|
||||||
if permute_dim in dim_partition_dict_for_input:
|
|
||||||
dim_partition_dict_for_output[dim_index] = dim_partition_dict_for_input[permute_dim]
|
|
||||||
|
|
||||||
dim_partition_dict_mapping = {
|
|
||||||
"input": dim_partition_dict_for_input,
|
|
||||||
"output": dim_partition_dict_for_output,
|
|
||||||
}
|
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
|
||||||
|
|
||||||
# add index into name to pass the duplicated check
|
|
||||||
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
|
||||||
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
|
||||||
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
|
|
||||||
|
|
||||||
strategy = self.get_sharding_strategy(name=name,
|
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
|
||||||
communication_action_mapping=communication_action_mapping)
|
|
||||||
strategy_list.append(strategy)
|
|
||||||
|
|
||||||
return strategy_list
|
|
||||||
|
|
||||||
|
|
||||||
class TransposeGenerator(ReshapeGenerator):
|
|
||||||
"""
|
|
||||||
TransposeGenerator deals with the sharding strategies of permute op.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
|
||||||
strategy_list = []
|
|
||||||
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
|
||||||
dim_partition_dict_mapping = {}
|
|
||||||
communication_action_mapping = {}
|
|
||||||
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
|
||||||
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
|
|
||||||
dim_partition_dict_for_output = {}
|
|
||||||
|
|
||||||
transpose_dims = self.op_data['transpose_dims'].data
|
|
||||||
dim_0 = transpose_dims[0]
|
|
||||||
dim_1 = transpose_dims[1]
|
|
||||||
for dim, sharded_dims in dim_partition_dict_for_input.items():
|
|
||||||
if dim == dim_0:
|
|
||||||
dim_partition_dict_for_output[dim_1] = dim_partition_dict_for_input[dim_0]
|
|
||||||
elif dim == dim_1:
|
|
||||||
dim_partition_dict_for_output[dim_0] = dim_partition_dict_for_input[dim_1]
|
|
||||||
else:
|
|
||||||
dim_partition_dict_for_output[dim] = sharded_dims
|
|
||||||
|
|
||||||
dim_partition_dict_mapping = {
|
|
||||||
"input": dim_partition_dict_for_input,
|
|
||||||
"output": dim_partition_dict_for_output,
|
|
||||||
}
|
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
|
||||||
|
|
||||||
# add index into name to pass the duplicated check
|
|
||||||
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
|
||||||
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
|
||||||
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
|
|
||||||
|
|
||||||
strategy = self.get_sharding_strategy(name=name,
|
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
|
||||||
communication_action_mapping=communication_action_mapping)
|
|
||||||
strategy_list.append(strategy)
|
|
||||||
|
|
||||||
return strategy_list
|
|
||||||
|
|
||||||
|
|
||||||
class SplitGenerator(ReshapeGenerator):
|
|
||||||
"""
|
|
||||||
SplitGenerator deals with the sharding strategies of split op.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
|
||||||
strategy_list = []
|
|
||||||
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
|
||||||
recover_dims = None
|
|
||||||
dim_partition_dict_mapping = {}
|
|
||||||
communication_action_mapping = {}
|
|
||||||
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
|
||||||
dim_partition_dict_for_input = copy.deepcopy(input_sharding_spec.dim_partition_dict)
|
|
||||||
split_size, split_dim = self.op_data['split_info'].data
|
|
||||||
|
|
||||||
if split_dim in dim_partition_dict_for_input:
|
|
||||||
recover_dims = dim_partition_dict_for_input.pop(split_dim)
|
|
||||||
|
|
||||||
dim_partition_dict_for_output = [
|
|
||||||
copy.deepcopy(dim_partition_dict_for_input) for _ in range(len(self.op_data["output"].data))
|
|
||||||
]
|
|
||||||
assert len(dim_partition_dict_for_output) >= 2
|
|
||||||
dim_partition_dict_mapping = {
|
|
||||||
"input": dim_partition_dict_for_input,
|
|
||||||
"output": dim_partition_dict_for_output,
|
|
||||||
}
|
|
||||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
|
||||||
# add index into name to pass the duplicated check
|
|
||||||
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
|
||||||
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
|
||||||
name = f'{sharding_spec_mapping["input"].sharding_sequence}_{index}'
|
|
||||||
|
|
||||||
# add comm action if the input need to be recovered to replica in the split dimension.
|
|
||||||
if recover_dims:
|
|
||||||
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
|
||||||
if len(recover_dims) == 1:
|
|
||||||
recover_dims = recover_dims[0]
|
|
||||||
input_comm_action = self.get_communication_action(
|
|
||||||
sharding_spec=sharding_spec_mapping["input"],
|
|
||||||
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
|
||||||
logical_process_axis=recover_dims,
|
|
||||||
comm_type=CommType.BEFORE,
|
|
||||||
arg_index=0)
|
|
||||||
# it will gather the input through gather_dim during forward phase.
|
|
||||||
input_comm_action.comm_spec.gather_dim = split_dim
|
|
||||||
# it will split the input activation grad through split_dim during backward phase.
|
|
||||||
input_comm_action.comm_spec.shard_dim = split_dim
|
|
||||||
|
|
||||||
elif len(recover_dims) >= 2:
|
|
||||||
# original sharding spec
|
|
||||||
source_spec = input_sharding_spec
|
|
||||||
# target sharding spec
|
|
||||||
target_spec = sharding_spec_mapping["input"]
|
|
||||||
comm_spec = {'src_spec': source_spec, 'tgt_spec': target_spec}
|
|
||||||
input_comm_action = CommAction(comm_spec=comm_spec, comm_type=CommType.BEFORE, arg_index=0)
|
|
||||||
|
|
||||||
else:
|
|
||||||
input_comm_action = None
|
|
||||||
|
|
||||||
if input_comm_action is not None:
|
|
||||||
communication_action_mapping["input"] = input_comm_action
|
|
||||||
|
|
||||||
strategy = self.get_sharding_strategy(name=name,
|
|
||||||
sharding_spec_mapping=sharding_spec_mapping,
|
|
||||||
communication_action_mapping=communication_action_mapping)
|
|
||||||
strategy_list.append(strategy)
|
|
||||||
|
|
||||||
return strategy_list
|
|
|
@ -2,11 +2,10 @@ from typing import Dict, List
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ...sharding_strategy import OperationData, OperationDataType
|
from ..sharding_strategy import OperationData, OperationDataType
|
||||||
from ..node_handler import NodeHandler
|
from .node_handler import NodeHandler
|
||||||
from ..registry import operator_registry
|
from .registry import operator_registry
|
||||||
from ..strategy import StrategyGenerator
|
from .strategy import PermuteGenerator, StrategyGenerator
|
||||||
from .reshape_generator import PermuteGenerator
|
|
||||||
|
|
||||||
__all__ = ['PermuteHandler']
|
__all__ = ['PermuteHandler']
|
||||||
|
|
|
@ -2,11 +2,10 @@ from typing import Dict, List
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ...sharding_strategy import OperationData, OperationDataType
|
from ..sharding_strategy import OperationData, OperationDataType
|
||||||
from ..node_handler import NodeHandler
|
from .node_handler import NodeHandler
|
||||||
from ..registry import operator_registry
|
from .registry import operator_registry
|
||||||
from ..strategy import StrategyGenerator
|
from .strategy import SplitGenerator, StrategyGenerator
|
||||||
from .reshape_generator import SplitGenerator
|
|
||||||
|
|
||||||
__all__ = ['SplitHandler']
|
__all__ = ['SplitHandler']
|
||||||
|
|
|
@ -14,7 +14,13 @@ from .matmul_strategy_generator import (
|
||||||
from .normal_pooling_generator import NormalPoolStrategyGenerator
|
from .normal_pooling_generator import NormalPoolStrategyGenerator
|
||||||
from .output_generator import OutputGenerator
|
from .output_generator import OutputGenerator
|
||||||
from .placeholder_generator import PlaceholderGenerator
|
from .placeholder_generator import PlaceholderGenerator
|
||||||
from .reshape_generator import ReshapeGenerator
|
from .reshape_generator import (
|
||||||
|
DefaultReshapeGenerator,
|
||||||
|
PermuteGenerator,
|
||||||
|
SplitGenerator,
|
||||||
|
TransposeGenerator,
|
||||||
|
ViewGenerator,
|
||||||
|
)
|
||||||
from .softmax_generator import SoftmaxGenerator
|
from .softmax_generator import SoftmaxGenerator
|
||||||
from .strategy_generator import StrategyGenerator
|
from .strategy_generator import StrategyGenerator
|
||||||
from .sum_generator import SumGenerator
|
from .sum_generator import SumGenerator
|
||||||
|
@ -26,7 +32,8 @@ __all__ = [
|
||||||
'StrategyGenerator', 'DotProductStrategyGenerator', 'MatVecStrategyGenerator', 'LinearProjectionStrategyGenerator',
|
'StrategyGenerator', 'DotProductStrategyGenerator', 'MatVecStrategyGenerator', 'LinearProjectionStrategyGenerator',
|
||||||
'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
|
'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
|
||||||
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
||||||
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
|
'LayerNormGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator', 'NormalPoolStrategyGenerator',
|
||||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator',
|
'BinaryElementwiseStrategyGenerator', 'GetattrGenerator', 'TensorConstructorGenerator',
|
||||||
'TensorConstructorGenerator', 'EmbeddingStrategyGenerator', 'SumGenerator', 'SoftmaxGenerator'
|
'EmbeddingStrategyGenerator', 'SumGenerator', 'SoftmaxGenerator', 'ViewGenerator', 'PermuteGenerator',
|
||||||
|
'TransposeGenerator', 'SplitGenerator', 'DefaultReshapeGenerator'
|
||||||
]
|
]
|
||||||
|
|
|
@ -1,6 +1,7 @@
|
||||||
import copy
|
import copy
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.node_handler.strategy.strategy_generator import FollowingStrategyGenerator
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||||
CommAction,
|
CommAction,
|
||||||
CommType,
|
CommType,
|
||||||
|
@ -8,17 +9,20 @@ from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||||
ShardingStrategy,
|
ShardingStrategy,
|
||||||
TrainCycleItem,
|
TrainCycleItem,
|
||||||
)
|
)
|
||||||
|
from colossalai.auto_parallel.tensor_shard.utils import (
|
||||||
|
check_keep_sharding_status,
|
||||||
|
detect_reshape_mapping,
|
||||||
|
infer_output_dim_partition_dict,
|
||||||
|
)
|
||||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||||
|
|
||||||
from .strategy_generator import FollowingStrategyGenerator
|
__all__ = ['ReshapeGenerator', 'ViewGenerator', 'PermuteGenerator', 'TransposeGenerator', 'SplitGenerator']
|
||||||
|
|
||||||
__all__ = ['ReshapeGenerator']
|
|
||||||
|
|
||||||
|
|
||||||
class ReshapeGenerator(FollowingStrategyGenerator):
|
class ReshapeGenerator(FollowingStrategyGenerator):
|
||||||
"""
|
"""
|
||||||
ReshapeGenerator which deals with the sharding strategies of Reshape Op, such as torch.Tensor.permute.
|
ReshapeGenerator is the base class for all the reshape operation.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def validate(self) -> bool:
|
def validate(self) -> bool:
|
||||||
|
@ -57,11 +61,255 @@ class ReshapeGenerator(FollowingStrategyGenerator):
|
||||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||||
strategy.memory_cost = memory_cost
|
strategy.memory_cost = memory_cost
|
||||||
|
|
||||||
|
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||||
|
return super().collate_strategies()
|
||||||
|
|
||||||
|
|
||||||
|
class ViewGenerator(ReshapeGenerator):
|
||||||
|
"""
|
||||||
|
ViewGenerator deals with the sharding strategies of view op.
|
||||||
|
"""
|
||||||
|
|
||||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||||
strategy_list = []
|
strategy_list = []
|
||||||
# For reshape function, to keep the computing correctness we keep the sharding
|
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
||||||
# spec of input is fully replicated. In addition, we will keep the output in
|
dim_partition_dict_mapping = {}
|
||||||
# replica status and let the successor node choose the way to resharding the
|
communication_action_mapping = {}
|
||||||
|
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
||||||
|
|
||||||
|
origin_shape = self.op_data['input'].data.shape
|
||||||
|
tgt_shape = self.op_data['tgt_shape'].data
|
||||||
|
|
||||||
|
reshape_mapping_dict = detect_reshape_mapping(origin_shape, tgt_shape)
|
||||||
|
|
||||||
|
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
|
||||||
|
keep_sharding_status = check_keep_sharding_status(dim_partition_dict_for_input, reshape_mapping_dict)
|
||||||
|
|
||||||
|
if keep_sharding_status:
|
||||||
|
dim_partition_dict_for_output = infer_output_dim_partition_dict(dim_partition_dict_for_input,
|
||||||
|
reshape_mapping_dict)
|
||||||
|
else:
|
||||||
|
dim_partition_dict_for_output = {}
|
||||||
|
|
||||||
|
dim_partition_dict_mapping = {
|
||||||
|
"input": dim_partition_dict_for_input,
|
||||||
|
"output": dim_partition_dict_for_output,
|
||||||
|
}
|
||||||
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
|
# add index into name to pass the duplicated check
|
||||||
|
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
||||||
|
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
||||||
|
if keep_sharding_status:
|
||||||
|
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
|
||||||
|
else:
|
||||||
|
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> FULLY REPLICATED_{index}'
|
||||||
|
|
||||||
|
# add comm action for converting input to fully replicated
|
||||||
|
total_mesh_dim_list = []
|
||||||
|
for mesh_dim_list in dim_partition_dict_for_input.values():
|
||||||
|
total_mesh_dim_list.extend(mesh_dim_list)
|
||||||
|
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
||||||
|
if len(total_mesh_dim_list) == 1:
|
||||||
|
total_mesh_dim_list = total_mesh_dim_list[0]
|
||||||
|
# the total mesh dim list only has one element, so the shard dim has only one element as well.
|
||||||
|
shard_dim = list(dim_partition_dict_for_input.keys())[0]
|
||||||
|
input_comm_action = self.get_communication_action(
|
||||||
|
sharding_spec=sharding_spec_mapping["input"],
|
||||||
|
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
||||||
|
logical_process_axis=total_mesh_dim_list,
|
||||||
|
comm_type=CommType.BEFORE,
|
||||||
|
arg_index=0)
|
||||||
|
# it will gather the input through gather_dim during forward phase.
|
||||||
|
input_comm_action.comm_spec.gather_dim = shard_dim
|
||||||
|
# it will split the input activation grad through shard_dim during backward phase.
|
||||||
|
input_comm_action.comm_spec.shard_dim = shard_dim
|
||||||
|
|
||||||
|
elif len(total_mesh_dim_list) >= 2:
|
||||||
|
source_spec = sharding_spec_mapping["input"]
|
||||||
|
target_spec = ShardingSpec(device_mesh=self.device_mesh,
|
||||||
|
entire_shape=source_spec.entire_shape,
|
||||||
|
dim_partition_dict={})
|
||||||
|
comm_spec = {'src_spec': source_spec, 'tgt_spec': target_spec}
|
||||||
|
input_comm_action = CommAction(comm_spec=comm_spec, comm_type=CommType.BEFORE, arg_index=0)
|
||||||
|
|
||||||
|
else:
|
||||||
|
input_comm_action = None
|
||||||
|
|
||||||
|
if input_comm_action is not None:
|
||||||
|
communication_action_mapping["input"] = input_comm_action
|
||||||
|
|
||||||
|
strategy = self.get_sharding_strategy(name=name,
|
||||||
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
communication_action_mapping=communication_action_mapping)
|
||||||
|
strategy_list.append(strategy)
|
||||||
|
|
||||||
|
return strategy_list
|
||||||
|
|
||||||
|
|
||||||
|
class PermuteGenerator(ReshapeGenerator):
|
||||||
|
"""
|
||||||
|
PermuteGenerator deals with the sharding strategies of permute op.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||||
|
strategy_list = []
|
||||||
|
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
||||||
|
dim_partition_dict_mapping = {}
|
||||||
|
communication_action_mapping = {}
|
||||||
|
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
||||||
|
|
||||||
|
permute_dims = self.op_data['permute_dims'].data
|
||||||
|
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
|
||||||
|
dim_partition_dict_for_output = {}
|
||||||
|
for dim_index, permute_dim in enumerate(permute_dims):
|
||||||
|
if permute_dim in dim_partition_dict_for_input:
|
||||||
|
dim_partition_dict_for_output[dim_index] = dim_partition_dict_for_input[permute_dim]
|
||||||
|
|
||||||
|
dim_partition_dict_mapping = {
|
||||||
|
"input": dim_partition_dict_for_input,
|
||||||
|
"output": dim_partition_dict_for_output,
|
||||||
|
}
|
||||||
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
|
# add index into name to pass the duplicated check
|
||||||
|
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
||||||
|
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
||||||
|
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
|
||||||
|
|
||||||
|
strategy = self.get_sharding_strategy(name=name,
|
||||||
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
communication_action_mapping=communication_action_mapping)
|
||||||
|
strategy_list.append(strategy)
|
||||||
|
|
||||||
|
return strategy_list
|
||||||
|
|
||||||
|
|
||||||
|
class TransposeGenerator(ReshapeGenerator):
|
||||||
|
"""
|
||||||
|
TransposeGenerator deals with the sharding strategies of permute op.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||||
|
strategy_list = []
|
||||||
|
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
||||||
|
dim_partition_dict_mapping = {}
|
||||||
|
communication_action_mapping = {}
|
||||||
|
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
||||||
|
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
|
||||||
|
dim_partition_dict_for_output = {}
|
||||||
|
|
||||||
|
transpose_dims = self.op_data['transpose_dims'].data
|
||||||
|
dim_0 = transpose_dims[0]
|
||||||
|
dim_1 = transpose_dims[1]
|
||||||
|
for dim, sharded_dims in dim_partition_dict_for_input.items():
|
||||||
|
if dim == dim_0:
|
||||||
|
dim_partition_dict_for_output[dim_1] = dim_partition_dict_for_input[dim_0]
|
||||||
|
elif dim == dim_1:
|
||||||
|
dim_partition_dict_for_output[dim_0] = dim_partition_dict_for_input[dim_1]
|
||||||
|
else:
|
||||||
|
dim_partition_dict_for_output[dim] = sharded_dims
|
||||||
|
|
||||||
|
dim_partition_dict_mapping = {
|
||||||
|
"input": dim_partition_dict_for_input,
|
||||||
|
"output": dim_partition_dict_for_output,
|
||||||
|
}
|
||||||
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
|
||||||
|
# add index into name to pass the duplicated check
|
||||||
|
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
||||||
|
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
||||||
|
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> {sharding_spec_mapping["output"].sharding_sequence}_{index}'
|
||||||
|
|
||||||
|
strategy = self.get_sharding_strategy(name=name,
|
||||||
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
communication_action_mapping=communication_action_mapping)
|
||||||
|
strategy_list.append(strategy)
|
||||||
|
|
||||||
|
return strategy_list
|
||||||
|
|
||||||
|
|
||||||
|
class SplitGenerator(ReshapeGenerator):
|
||||||
|
"""
|
||||||
|
SplitGenerator deals with the sharding strategies of split op.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||||
|
strategy_list = []
|
||||||
|
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
||||||
|
recover_dims = None
|
||||||
|
dim_partition_dict_mapping = {}
|
||||||
|
communication_action_mapping = {}
|
||||||
|
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
||||||
|
dim_partition_dict_for_input = copy.deepcopy(input_sharding_spec.dim_partition_dict)
|
||||||
|
split_size, split_dim = self.op_data['split_info'].data
|
||||||
|
|
||||||
|
if split_dim in dim_partition_dict_for_input:
|
||||||
|
recover_dims = dim_partition_dict_for_input.pop(split_dim)
|
||||||
|
|
||||||
|
dim_partition_dict_for_output = [
|
||||||
|
copy.deepcopy(dim_partition_dict_for_input) for _ in range(len(self.op_data["output"].data))
|
||||||
|
]
|
||||||
|
assert len(dim_partition_dict_for_output) >= 2
|
||||||
|
dim_partition_dict_mapping = {
|
||||||
|
"input": dim_partition_dict_for_input,
|
||||||
|
"output": dim_partition_dict_for_output,
|
||||||
|
}
|
||||||
|
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||||
|
# add index into name to pass the duplicated check
|
||||||
|
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
||||||
|
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
||||||
|
name = f'{sharding_spec_mapping["input"].sharding_sequence}_{index}'
|
||||||
|
|
||||||
|
# add comm action if the input need to be recovered to replica in the split dimension.
|
||||||
|
if recover_dims:
|
||||||
|
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
||||||
|
if len(recover_dims) == 1:
|
||||||
|
recover_dims = recover_dims[0]
|
||||||
|
input_comm_action = self.get_communication_action(
|
||||||
|
sharding_spec=sharding_spec_mapping["input"],
|
||||||
|
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
||||||
|
logical_process_axis=recover_dims,
|
||||||
|
comm_type=CommType.BEFORE,
|
||||||
|
arg_index=0)
|
||||||
|
# it will gather the input through gather_dim during forward phase.
|
||||||
|
input_comm_action.comm_spec.gather_dim = split_dim
|
||||||
|
# it will split the input activation grad through split_dim during backward phase.
|
||||||
|
input_comm_action.comm_spec.shard_dim = split_dim
|
||||||
|
|
||||||
|
elif len(recover_dims) >= 2:
|
||||||
|
# original sharding spec
|
||||||
|
source_spec = input_sharding_spec
|
||||||
|
# target sharding spec
|
||||||
|
target_spec = sharding_spec_mapping["input"]
|
||||||
|
comm_spec = {'src_spec': source_spec, 'tgt_spec': target_spec}
|
||||||
|
input_comm_action = CommAction(comm_spec=comm_spec, comm_type=CommType.BEFORE, arg_index=0)
|
||||||
|
|
||||||
|
else:
|
||||||
|
input_comm_action = None
|
||||||
|
|
||||||
|
if input_comm_action is not None:
|
||||||
|
communication_action_mapping["input"] = input_comm_action
|
||||||
|
|
||||||
|
strategy = self.get_sharding_strategy(name=name,
|
||||||
|
sharding_spec_mapping=sharding_spec_mapping,
|
||||||
|
communication_action_mapping=communication_action_mapping)
|
||||||
|
strategy_list.append(strategy)
|
||||||
|
|
||||||
|
return strategy_list
|
||||||
|
|
||||||
|
|
||||||
|
class DefaultReshapeGenerator(ReshapeGenerator):
|
||||||
|
"""
|
||||||
|
DefaultReshapeGenerator which deals with the sharding strategies of Reshape Op which have to recover the tensor
|
||||||
|
to Replica status.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||||
|
strategy_list = []
|
||||||
|
# For default reshape strategy, to keep the computing correctness we keep the
|
||||||
|
# sharding spec of input is fully replicated. In addition, we will keep the output
|
||||||
|
# in replica status and let the successor node choose the way to resharding the
|
||||||
# output node. Therefore, the different strategies of input node with same
|
# output node. Therefore, the different strategies of input node with same
|
||||||
# output sharding spec will generate same strategy for reshape function.
|
# output sharding spec will generate same strategy for reshape function.
|
||||||
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
||||||
|
@ -114,9 +362,4 @@ class ReshapeGenerator(FollowingStrategyGenerator):
|
||||||
communication_action_mapping=communication_action_mapping)
|
communication_action_mapping=communication_action_mapping)
|
||||||
strategy_list.append(strategy)
|
strategy_list.append(strategy)
|
||||||
|
|
||||||
for strategy in strategy_list:
|
|
||||||
self.update_communication_cost(strategy)
|
|
||||||
self.update_compute_cost(strategy)
|
|
||||||
self.update_memory_cost(strategy)
|
|
||||||
|
|
||||||
return strategy_list
|
return strategy_list
|
||||||
|
|
|
@ -2,11 +2,10 @@ from typing import Dict, List
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ...sharding_strategy import OperationData, OperationDataType
|
from ..sharding_strategy import OperationData, OperationDataType
|
||||||
from ..node_handler import NodeHandler
|
from .node_handler import NodeHandler
|
||||||
from ..registry import operator_registry
|
from .registry import operator_registry
|
||||||
from ..strategy import StrategyGenerator
|
from .strategy import StrategyGenerator, TransposeGenerator
|
||||||
from .reshape_generator import TransposeGenerator
|
|
||||||
|
|
||||||
__all__ = ['TransposeHandler']
|
__all__ = ['TransposeHandler']
|
||||||
|
|
|
@ -2,11 +2,10 @@ from typing import Dict, List
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ...sharding_strategy import OperationData, OperationDataType
|
from ..sharding_strategy import OperationData, OperationDataType
|
||||||
from ..node_handler import NodeHandler
|
from .node_handler import NodeHandler
|
||||||
from ..registry import operator_registry
|
from .registry import operator_registry
|
||||||
from ..strategy import StrategyGenerator
|
from .strategy import StrategyGenerator, ViewGenerator
|
||||||
from .reshape_generator import ViewGenerator
|
|
||||||
|
|
||||||
__all__ = ['ViewHandler']
|
__all__ = ['ViewHandler']
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.node_handler import DefaultReshapeHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.reshape_handler import ReshapeHandler
|
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||||
|
@ -51,9 +51,9 @@ def test_reshape_handler():
|
||||||
strategies_vector=conv_strategies_vector)
|
strategies_vector=conv_strategies_vector)
|
||||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||||
reshape_handler = ReshapeHandler(node=reshape_node,
|
reshape_handler = DefaultReshapeHandler(node=reshape_node,
|
||||||
device_mesh=device_mesh,
|
device_mesh=device_mesh,
|
||||||
strategies_vector=reshape_strategies_vector)
|
strategies_vector=reshape_strategies_vector)
|
||||||
|
|
||||||
reshape_handler.register_strategy(compute_resharding_cost=False)
|
reshape_handler.register_strategy(compute_resharding_cost=False)
|
||||||
|
|
|
@ -5,10 +5,10 @@ import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.node_handler.default_reshape_handler import DefaultReshapeHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.getitem_handler import GetItemHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.getitem_handler import GetItemHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.placeholder_handler import PlaceholderHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.placeholder_handler import PlaceholderHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.reshape_handler import ReshapeHandler
|
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||||
|
@ -153,7 +153,9 @@ def test_getitem_from_tuple_handler():
|
||||||
)
|
)
|
||||||
input_handler.register_strategy(compute_resharding_cost=False)
|
input_handler.register_strategy(compute_resharding_cost=False)
|
||||||
setattr(input_node, 'strategies_vector', input_strategies_vector)
|
setattr(input_node, 'strategies_vector', input_strategies_vector)
|
||||||
split_handler = ReshapeHandler(node=split_node, device_mesh=device_mesh, strategies_vector=split_strategies_vector)
|
split_handler = DefaultReshapeHandler(node=split_node,
|
||||||
|
device_mesh=device_mesh,
|
||||||
|
strategies_vector=split_strategies_vector)
|
||||||
split_handler.register_strategy(compute_resharding_cost=False)
|
split_handler.register_strategy(compute_resharding_cost=False)
|
||||||
setattr(split_node, 'strategies_vector', split_strategies_vector)
|
setattr(split_node, 'strategies_vector', split_strategies_vector)
|
||||||
getitem_handler = GetItemHandler(node=getitem_node,
|
getitem_handler = GetItemHandler(node=getitem_node,
|
||||||
|
|
|
@ -5,8 +5,8 @@ import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.node_handler import PermuteHandler, TransposeHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import PermuteHandler, TransposeHandler
|
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
|
|
|
@ -5,8 +5,8 @@ import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.node_handler import SplitHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import SplitHandler
|
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
|
@ -156,8 +156,7 @@ def check_split_handler(rank, split_size, split_dim, model_cls, world_size, port
|
||||||
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
||||||
assert len(split_strategies_vector) == len(previous_strategies_vector)
|
assert len(split_strategies_vector) == len(previous_strategies_vector)
|
||||||
strategy_name_list = [strategy.name for strategy in split_strategies_vector]
|
strategy_name_list = [strategy.name for strategy in split_strategies_vector]
|
||||||
for name in strategy_name_list:
|
|
||||||
print(name)
|
|
||||||
if model_cls.__name__ == 'ConvSplitModel':
|
if model_cls.__name__ == 'ConvSplitModel':
|
||||||
|
|
||||||
if split_dim == 0:
|
if split_dim == 0:
|
||||||
|
|
|
@ -5,8 +5,8 @@ import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from colossalai.auto_parallel.tensor_shard.node_handler import ViewHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import ViewHandler
|
|
||||||
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
||||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||||
from colossalai.device.device_mesh import DeviceMesh
|
from colossalai.device.device_mesh import DeviceMesh
|
||||||
|
|
Loading…
Reference in New Issue