mirror of https://github.com/hpcaitech/ColossalAI
[doc] update nvme offload doc (#3014)
* [doc] update nvme offload doc * [doc] add doc testing cmd and requirements * [doc] add api reference * [doc] add dependenciespull/3056/head
parent
c21b11edce
commit
378d827c6b
|
@ -1,2 +1,6 @@
|
|||
colossalai
|
||||
torch
|
||||
packaging
|
||||
tensornvme
|
||||
psutil
|
||||
transformers
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- doc-test-command: torchrun --standalone --nproc_per_node=1 nvme_offload.py -->
|
||||
# NVMe offload
|
||||
|
||||
Author: Hongxin Liu
|
||||
|
@ -36,12 +37,225 @@ pip install tensornvme
|
|||
|
||||
We implement NVMe offload of optimizer states for Adam ([CPUAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.cpu_adam.html) and [HybridAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.hybrid_adam.html)).
|
||||
|
||||
|
||||
<!--- doc-test-ignore-start -->
|
||||
|
||||
```python
|
||||
from colossalai.nn.optimizer import CPUAdam, HybridAdam
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3, nvme_offload_fraction=1.0, nvme_offload_dir='./')
|
||||
```
|
||||
|
||||
<!--- doc-test-ignore-end -->
|
||||
|
||||
`nvme_offload_fraction` is the fraction of optimizer states to be offloaded to NVMe. `nvme_offload_dir` is the directory to save NVMe offload files. If `nvme_offload_dir` is `None`, a random temporary directory will be used.
|
||||
|
||||
It's compatible with all parallel methods in ColossalAI.
|
||||
|
||||
> ⚠ It only offloads optimizer states on CPU. This means it only affects CPU training or Zero/Gemini with offloading.
|
||||
|
||||
## Exampls
|
||||
|
||||
Let's start from two simple examples -- training GPT with different methods. These examples relies on `transformers`.
|
||||
|
||||
We should install denpendencies first:
|
||||
|
||||
```shell
|
||||
pip install psutil transformers
|
||||
```
|
||||
|
||||
First, we import essential packages and modules:
|
||||
|
||||
```python
|
||||
import os
|
||||
import time
|
||||
from typing import Dict, Optional
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
||||
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
```
|
||||
|
||||
Then we define a loss function:
|
||||
|
||||
```python
|
||||
class GPTLMLoss(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, logits, labels):
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)),
|
||||
shift_labels.view(-1))
|
||||
```
|
||||
|
||||
And we define some utility functions, which generates random data, computes the number of paramters of a model and get memory usage of current process:
|
||||
|
||||
```python
|
||||
def get_data(batch_size: int, seq_len: int,
|
||||
vocab_size: int, device: Optional[str] = None) -> Dict[str, torch.Tensor]:
|
||||
device = torch.cuda.current_device() if device is None else device
|
||||
input_ids = torch.randint(vocab_size, (batch_size, seq_len),
|
||||
device=device)
|
||||
attn_mask = torch.ones_like(input_ids)
|
||||
return dict(input_ids=input_ids, attention_mask=attn_mask)
|
||||
|
||||
|
||||
def get_model_numel(model: nn.Module) -> int:
|
||||
return sum(p.numel() for p in model.parameters())
|
||||
|
||||
|
||||
def get_mem_usage() -> int:
|
||||
proc = psutil.Process(os.getpid())
|
||||
return proc.memory_info().rss
|
||||
```
|
||||
|
||||
We first try to train GPT model on CPU:
|
||||
|
||||
```python
|
||||
def train_cpu(nvme_offload_fraction: float = 0.0):
|
||||
config = GPT2Config()
|
||||
model = GPT2LMHeadModel(config)
|
||||
criterion = GPTLMLoss()
|
||||
optimizer = HybridAdam(model.parameters(), nvme_offload_fraction=nvme_offload_fraction)
|
||||
print(f'Model numel: {get_model_numel(model) / 1024**3:.3f} B')
|
||||
|
||||
start = time.time()
|
||||
for step in range(3):
|
||||
data = get_data(4, 128, config.vocab_size, device='cpu')
|
||||
outputs = model(**data)
|
||||
loss = criterion(outputs.logits, data['input_ids'])
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
print(f'[{step}] loss: {loss.item():.3f}')
|
||||
|
||||
print(f'Time: {time.time() - start:.3f} s')
|
||||
print(f'Mem usage: {get_mem_usage() / 1024**2:.3f} MB')
|
||||
```
|
||||
|
||||
Run without NVME offload:
|
||||
|
||||
```python
|
||||
train_cpu(0.0)
|
||||
```
|
||||
|
||||
We may get below output:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
[0] loss: 10.953
|
||||
[1] loss: 10.974
|
||||
[2] loss: 10.965
|
||||
Time: 7.739 s
|
||||
Mem usage: 5966.445 MB
|
||||
```
|
||||
|
||||
And then run with (full) NVME offload:
|
||||
|
||||
```python
|
||||
train_cpu(1.0)
|
||||
```
|
||||
|
||||
We may get:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
[0] loss: 10.951
|
||||
[1] loss: 10.994
|
||||
[2] loss: 10.984
|
||||
Time: 8.527 s
|
||||
Mem usage: 4968.016 MB
|
||||
```
|
||||
|
||||
For GPT2-S, which has 0.116 billion parameters, its optimizer states take about 0.928 GB memory. And NVME offload saves about 998 MB memory, which meets our expectations.
|
||||
|
||||
Then we can train GPT model with Gemini. The placement policy of Gemini should be `"auto"`, `"cpu"` or `"const"`.
|
||||
|
||||
```python
|
||||
def train_gemini_cpu(nvme_offload_fraction: float = 0.0):
|
||||
colossalai.launch_from_torch({})
|
||||
config = GPT2Config()
|
||||
with ColoInitContext(device=torch.cuda.current_device()):
|
||||
model = GPT2LMHeadModel(config)
|
||||
criterion = GPTLMLoss()
|
||||
optimizer = HybridAdam(model.parameters(), nvme_offload_fraction=nvme_offload_fraction)
|
||||
print(f'Model numel: {get_model_numel(model) / 1024**3:.3f} B')
|
||||
|
||||
gemini_config = dict(strict_ddp_mode=True, device=torch.cuda.current_device(),
|
||||
placement_policy='cpu', pin_memory=True, hidden_dim=config.n_embd)
|
||||
model = zero_model_wrapper(model, zero_stage=3, gemini_config=gemini_config)
|
||||
optimizer = zero_optim_wrapper(model, optimizer, initial_scale=2**5)
|
||||
|
||||
start = time.time()
|
||||
for step in range(3):
|
||||
data = get_data(4, 128, config.vocab_size)
|
||||
outputs = model(**data)
|
||||
loss = criterion(outputs.logits, data['input_ids'])
|
||||
optimizer.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
print(f'[{step}] loss: {loss.item():.3f}')
|
||||
|
||||
print(f'Time: {time.time() - start:.3f} s')
|
||||
print(f'Mem usage: {get_mem_usage() / 1024**2:.3f} MB')
|
||||
```
|
||||
|
||||
Run without NVME offload:
|
||||
|
||||
```python
|
||||
train_gemini_cpu(0.0)
|
||||
```
|
||||
|
||||
We may get:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
searching chunk configuration is completed in 0.27 s.
|
||||
used number: 118.68 MB, wasted number: 0.75 MB
|
||||
total wasted percentage is 0.63%
|
||||
[0] loss: 10.953
|
||||
[1] loss: 10.938
|
||||
[2] loss: 10.969
|
||||
Time: 2.997 s
|
||||
Mem usage: 5592.227 MB
|
||||
```
|
||||
|
||||
And run with (full) NVME offload:
|
||||
|
||||
```python
|
||||
train_gemini_cpu(1.0)
|
||||
```
|
||||
|
||||
We may get:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
searching chunk configuration is completed in 0.27 s.
|
||||
used number: 118.68 MB, wasted number: 0.75 MB
|
||||
total wasted percentage is 0.63%
|
||||
[0] loss: 10.953
|
||||
[1] loss: 10.938
|
||||
[2] loss: 10.969
|
||||
Time: 3.691 s
|
||||
Mem usage: 5298.344 MB
|
||||
```
|
||||
|
||||
NVME offload saves about 294 MB memory. Note that enabling `pin_memory` of Gemini can accelerate training but increase memory usage. So this result also meets our expectation. If we disable `pin_memory`, we can aslo observe a memory usage drop about 900 MB.
|
||||
|
||||
## API Reference
|
||||
|
||||
{{ autodoc:colossalai.nn.optimizer.HybridAdam }}
|
||||
|
||||
{{ autodoc:colossalai.nn.optimizer.CPUAdam }}
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
<!-- doc-test-command: torchrun --standalone --nproc_per_node=1 nvme_offload.py -->
|
||||
# NVMe offload
|
||||
|
||||
作者: Hongxin Liu
|
||||
|
@ -36,12 +37,213 @@ pip install tensornvme
|
|||
|
||||
我们为 Adam ([CPUAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.cpu_adam.html) 和 [HybridAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.hybrid_adam.html)) 实现了优化器状态的 NVMe offload。
|
||||
|
||||
<!--- doc-test-ignore-start -->
|
||||
|
||||
```python
|
||||
from colossalai.nn.optimizer import CPUAdam, HybridAdam
|
||||
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3, nvme_offload_fraction=1.0, nvme_offload_dir='./')
|
||||
```
|
||||
|
||||
<!--- doc-test-ignore-end -->
|
||||
|
||||
`nvme_offload_fraction` 是要 offload 到 NVMe 的优化器状态的比例。 `nvme_offload_dir` 是保存 NVMe offload 文件的目录。如果 `nvme_offload_dir` 为 `None`,将使用随机临时目录。
|
||||
|
||||
它与 ColossalAI 中的所有并行方法兼容。
|
||||
|
||||
|
||||
> ⚠ 它只会卸载在 CPU 上的优化器状态。这意味着它只会影响 CPU 训练或者使用卸载的 Zero/Gemini。
|
||||
|
||||
## Exampls
|
||||
|
||||
Let's start from two simple examples -- training GPT with different methods. These examples relies on `transformers`.
|
||||
首先让我们从两个简单的例子开始 -- 用不同的方法训练 GPT。这些例子依赖`transformers`。
|
||||
|
||||
我们首先应该安装依赖:
|
||||
|
||||
```shell
|
||||
pip install psutil transformers
|
||||
```
|
||||
|
||||
首先,我们导入必要的包和模块:
|
||||
|
||||
```python
|
||||
import os
|
||||
import time
|
||||
from typing import Dict, Optional
|
||||
import psutil
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
||||
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
||||
import colossalai
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
```
|
||||
|
||||
然后我们定义一个损失函数:
|
||||
|
||||
```python
|
||||
class GPTLMLoss(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
def forward(self, logits, labels):
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)),
|
||||
shift_labels.view(-1))
|
||||
```
|
||||
|
||||
我们定义一些工具函数,用来生成随机数据、计算模型参数量和获取当前进程内存占用:
|
||||
|
||||
```python
|
||||
def get_data(batch_size: int, seq_len: int,
|
||||
vocab_size: int, device: Optional[str] = None) -> Dict[str, torch.Tensor]:
|
||||
device = torch.cuda.current_device() if device is None else device
|
||||
input_ids = torch.randint(vocab_size, (batch_size, seq_len),
|
||||
device=device)
|
||||
attn_mask = torch.ones_like(input_ids)
|
||||
return dict(input_ids=input_ids, attention_mask=attn_mask)
|
||||
def get_model_numel(model: nn.Module) -> int:
|
||||
return sum(p.numel() for p in model.parameters())
|
||||
def get_mem_usage() -> int:
|
||||
proc = psutil.Process(os.getpid())
|
||||
return proc.memory_info().rss
|
||||
```
|
||||
|
||||
我们首先尝试在 CPU 上训练 GPT 模型:
|
||||
|
||||
```python
|
||||
def train_cpu(nvme_offload_fraction: float = 0.0):
|
||||
config = GPT2Config()
|
||||
model = GPT2LMHeadModel(config)
|
||||
criterion = GPTLMLoss()
|
||||
optimizer = HybridAdam(model.parameters(), nvme_offload_fraction=nvme_offload_fraction)
|
||||
print(f'Model numel: {get_model_numel(model) / 1024**3:.3f} B')
|
||||
start = time.time()
|
||||
for step in range(3):
|
||||
data = get_data(4, 128, config.vocab_size, device='cpu')
|
||||
outputs = model(**data)
|
||||
loss = criterion(outputs.logits, data['input_ids'])
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
print(f'[{step}] loss: {loss.item():.3f}')
|
||||
print(f'Time: {time.time() - start:.3f} s')
|
||||
print(f'Mem usage: {get_mem_usage() / 1024**2:.3f} MB')
|
||||
```
|
||||
|
||||
不使用 NVME 卸载:
|
||||
|
||||
```python
|
||||
train_cpu(0.0)
|
||||
```
|
||||
|
||||
我们可能得到如下输出:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
[0] loss: 10.953
|
||||
[1] loss: 10.974
|
||||
[2] loss: 10.965
|
||||
Time: 7.739 s
|
||||
Mem usage: 5966.445 MB
|
||||
```
|
||||
|
||||
然后使用(全量) NVME 卸载:
|
||||
|
||||
```python
|
||||
train_cpu(1.0)
|
||||
```
|
||||
|
||||
我们可能得到:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
[0] loss: 10.951
|
||||
[1] loss: 10.994
|
||||
[2] loss: 10.984
|
||||
Time: 8.527 s
|
||||
Mem usage: 4968.016 MB
|
||||
```
|
||||
|
||||
对于有1.16亿参数的 GPT2-S 来说,它的优化器状态大约需要占用 0.928 GB 内存。NVME 卸载节省了大约 998 MB 内存,符合我们的预期。
|
||||
|
||||
然后我们可以用 Gemini 来训练 GPT 模型。放置策略应该设置为`"auto"`、 `"cpu"` 或 `"const"`。
|
||||
|
||||
```python
|
||||
def train_gemini_cpu(nvme_offload_fraction: float = 0.0):
|
||||
colossalai.launch_from_torch({})
|
||||
config = GPT2Config()
|
||||
with ColoInitContext(device=torch.cuda.current_device()):
|
||||
model = GPT2LMHeadModel(config)
|
||||
criterion = GPTLMLoss()
|
||||
optimizer = HybridAdam(model.parameters(), nvme_offload_fraction=nvme_offload_fraction)
|
||||
print(f'Model numel: {get_model_numel(model) / 1024**3:.3f} B')
|
||||
gemini_config = dict(strict_ddp_mode=True, device=torch.cuda.current_device(),
|
||||
placement_policy='cpu', pin_memory=True, hidden_dim=config.n_embd)
|
||||
model = zero_model_wrapper(model, zero_stage=3, gemini_config=gemini_config)
|
||||
optimizer = zero_optim_wrapper(model, optimizer, initial_scale=2**5)
|
||||
start = time.time()
|
||||
for step in range(3):
|
||||
data = get_data(4, 128, config.vocab_size)
|
||||
outputs = model(**data)
|
||||
loss = criterion(outputs.logits, data['input_ids'])
|
||||
optimizer.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
print(f'[{step}] loss: {loss.item():.3f}')
|
||||
print(f'Time: {time.time() - start:.3f} s')
|
||||
print(f'Mem usage: {get_mem_usage() / 1024**2:.3f} MB')
|
||||
```
|
||||
|
||||
不使用 NVME 卸载:
|
||||
|
||||
```python
|
||||
train_gemini_cpu(0.0)
|
||||
```
|
||||
|
||||
我们可能得到:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
searching chunk configuration is completed in 0.27 s.
|
||||
used number: 118.68 MB, wasted number: 0.75 MB
|
||||
total wasted percentage is 0.63%
|
||||
[0] loss: 10.953
|
||||
[1] loss: 10.938
|
||||
[2] loss: 10.969
|
||||
Time: 2.997 s
|
||||
Mem usage: 5592.227 MB
|
||||
```
|
||||
|
||||
然后使用(全量) NVME 卸载:
|
||||
|
||||
```python
|
||||
train_gemini_cpu(1.0)
|
||||
```
|
||||
|
||||
我们可能得到:
|
||||
|
||||
```
|
||||
Model numel: 0.116 B
|
||||
searching chunk configuration is completed in 0.27 s.
|
||||
used number: 118.68 MB, wasted number: 0.75 MB
|
||||
total wasted percentage is 0.63%
|
||||
[0] loss: 10.953
|
||||
[1] loss: 10.938
|
||||
[2] loss: 10.969
|
||||
Time: 3.691 s
|
||||
Mem usage: 5298.344 MB
|
||||
```
|
||||
|
||||
NVME 卸载节省了大约 294 MB 内存。注意使用 Gemini 的 `pin_memory` 功能可以加速训练,但是会增加内存占用。所以这个结果也是符合我们预期的。如果我们关闭 `pin_memory`,我们仍然可以观察到大约 900 MB 的内存占用下降。
|
||||
|
||||
## API 参考
|
||||
|
||||
{{ autodoc:colossalai.nn.optimizer.HybridAdam }}
|
||||
|
||||
{{ autodoc:colossalai.nn.optimizer.CPUAdam }}
|
||||
|
|
Loading…
Reference in New Issue