[Gemini] add bert for MemtracerWrapper unintests (#1982)

pull/1984/head
Jiarui Fang 2 years ago committed by GitHub
parent e481489aa6
commit 3712ac7f90
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -28,6 +28,9 @@ class _Wrapper():
def show_mem_stats(self):
self._ophook_list[0].show_mem_stats()
def named_buffers(self):
return self._model.named_buffers()
def MemtracerWrapper(model):
ophook_list = [MemTracerOpHook()]

@ -7,6 +7,7 @@ from colossalai.gemini.ophooks import BaseOpHook
class MemTracerOpHook(BaseOpHook):
"""
TODO() what if parameters are sharded by multiple submodules.
register buff on its father node
"""
def __init__(self):

@ -1,8 +1,13 @@
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import colossalai
from colossalai.gemini.memory_tracer import MemtracerWrapper
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from tests.components_to_test.registry import non_distributed_component_funcs
@ -17,16 +22,20 @@ def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
model.backward(loss)
def test_tracer():
# reset the manager, in case that there exists memory information left
test_models = ['repeated_computed_layers', 'resnet18', 'no_leaf_module']
def run_tracer(rank, world_size, port, grad_check=True):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18', 'no_leaf_module', 'bert']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, _, criterion = get_components_func()
# init model on cpu
model = MemtracerWrapper(model_builder())
# TODO() memtrace hook can not handle buff registered on a non-leaf module (for example the BertEmbedding).
# a simple method is that always puts buff on cuda and viewed them as non-model data.
model = MemtracerWrapper(model_builder(grad_check))
for n, buff in model.named_buffers():
buff.data = buff.data.cuda()
for i, (data, label) in enumerate(train_dataloader):
if i > 1:
break
@ -38,5 +47,13 @@ def test_tracer():
# model._ophook_list[0].print_non_model_data()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1])
@rerun_if_address_is_in_use()
def test_tracer(world_size):
run_func = partial(run_tracer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_tracer()
test_tracer(1)

@ -3,21 +3,21 @@
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from common import CONFIG, check_grads_padding, run_fwd_bwd
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.shard_utils import BucketTensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
from common import CONFIG, check_grads_padding, run_fwd_bwd
@parameterize("enable_autocast", [True])

Loading…
Cancel
Save