mirror of https://github.com/hpcaitech/ColossalAI
fix sharded param hook and unit test
parent
001ca624dd
commit
36f9a74ab2
|
@ -1,5 +1,4 @@
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
|
||||||
from colossalai.registry import OPHOOKS
|
from colossalai.registry import OPHOOKS
|
||||||
|
|
||||||
from . import BaseOpHook
|
from . import BaseOpHook
|
||||||
|
@ -21,29 +20,25 @@ class ShardParamHook(BaseOpHook):
|
||||||
for param in module.parameters():
|
for param in module.parameters():
|
||||||
assert hasattr(param, 'ca_attr')
|
assert hasattr(param, 'ca_attr')
|
||||||
param.ca_attr.gather()
|
param.ca_attr.gather()
|
||||||
if dist.get_rank() == 0:
|
param.data = param.ca_attr.payload()
|
||||||
print(f'{param._name} pre fwd shape {param.ca_attr.payload("cpu").shape}')
|
|
||||||
|
|
||||||
def post_fwd_exec(self, module: torch.nn.Module, *args):
|
def post_fwd_exec(self, module: torch.nn.Module, *args):
|
||||||
for param in module.parameters():
|
for param in module.parameters():
|
||||||
assert hasattr(param, 'ca_attr')
|
assert hasattr(param, 'ca_attr')
|
||||||
param.ca_attr.shard()
|
param.ca_attr.shard()
|
||||||
if dist.get_rank() == 0:
|
param.data = param.ca_attr.payload()
|
||||||
print(f'{param._name} post fwd shape {param.ca_attr.payload("cpu").shape}')
|
|
||||||
|
|
||||||
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
|
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
|
||||||
for param in module.parameters():
|
for param in module.parameters():
|
||||||
assert hasattr(param, 'ca_attr')
|
assert hasattr(param, 'ca_attr')
|
||||||
param.ca_attr.gather()
|
param.ca_attr.gather()
|
||||||
if dist.get_rank() == 0:
|
param.data = param.ca_attr.payload()
|
||||||
print(f'{param._name} pre bwd shape {param.ca_attr.payload("cpu").shape}')
|
|
||||||
|
|
||||||
def post_bwd_exec(self, module: torch.nn.Module, input):
|
def post_bwd_exec(self, module: torch.nn.Module, input):
|
||||||
for param in module.parameters():
|
for param in module.parameters():
|
||||||
assert hasattr(param, 'ca_attr')
|
assert hasattr(param, 'ca_attr')
|
||||||
param.ca_attr.shard()
|
param.ca_attr.shard()
|
||||||
if dist.get_rank() == 0:
|
param.data = param.ca_attr.payload()
|
||||||
print(f'{param._name} post bwd shape {param.ca_attr.payload("cpu").shape}')
|
|
||||||
|
|
||||||
def pre_iter(self):
|
def pre_iter(self):
|
||||||
pass
|
pass
|
||||||
|
|
|
@ -6,8 +6,7 @@ import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.engine.ophooks import (ShardGradHook, ShardParamHook,
|
from colossalai.engine.ophooks import (ShardGradHook, ShardParamHook, register_ophooks_recursively)
|
||||||
register_ophooks_recursively)
|
|
||||||
from colossalai.engine.paramhooks import BaseParamHookMgr
|
from colossalai.engine.paramhooks import BaseParamHookMgr
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
||||||
|
@ -109,6 +108,10 @@ class ShardedModelV2(nn.Module):
|
||||||
if not self._require_backward_grad_sync:
|
if not self._require_backward_grad_sync:
|
||||||
continue
|
continue
|
||||||
p._sharded_grad.write_back()
|
p._sharded_grad.write_back()
|
||||||
|
# In case some post bwd hook is not fired
|
||||||
|
for p in self.module.parameters():
|
||||||
|
if not p.ca_attr.is_sharded:
|
||||||
|
p.ca_attr.shard()
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def _grad_post_backward_hook(self, param: Parameter, grad: torch.Tensor) -> Optional[torch.Tensor]:
|
def _grad_post_backward_hook(self, param: Parameter, grad: torch.Tensor) -> Optional[torch.Tensor]:
|
||||||
|
|
|
@ -14,7 +14,6 @@ from torch.distributed import ProcessGroup
|
||||||
from torch.nn.parameter import Parameter
|
from torch.nn.parameter import Parameter
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
|
|
||||||
from ..sharded_model._zero3_utils import free_storage
|
|
||||||
from ._utils import has_inf_or_nan
|
from ._utils import has_inf_or_nan
|
||||||
|
|
||||||
|
|
||||||
|
@ -63,8 +62,6 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
||||||
if hasattr(p, 'ca_attr'):
|
if hasattr(p, 'ca_attr'):
|
||||||
assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model'
|
assert p.ca_attr.is_sharded, 'ShardedAdam can be only used with sharded model'
|
||||||
self.master_params[p] = p.ca_attr.payload(self.device)
|
self.master_params[p] = p.ca_attr.payload(self.device)
|
||||||
if dist.get_rank() == 0:
|
|
||||||
print(f'load payload {p._name} {self.master_params[p].shape}')
|
|
||||||
else:
|
else:
|
||||||
self.master_params[p] = p.data.to(device=self.device)
|
self.master_params[p] = p.data.to(device=self.device)
|
||||||
if torch.is_floating_point(self.master_params[p]) and self.master_params[p].dtype != torch.float:
|
if torch.is_floating_point(self.master_params[p]) and self.master_params[p].dtype != torch.float:
|
||||||
|
@ -91,23 +88,15 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
||||||
for group in self.optim.param_groups:
|
for group in self.optim.param_groups:
|
||||||
for p in group['params']:
|
for p in group['params']:
|
||||||
if hasattr(p, 'ca_attr'):
|
if hasattr(p, 'ca_attr'):
|
||||||
if dist.get_rank() == 0:
|
|
||||||
print(f'write {p._name} {p.shape} orig_shape {p.ca_attr._origin_shape} \
|
|
||||||
payload shape {p.ca_attr._param_payload.shape} sharded {p.ca_attr.is_sharded}')
|
|
||||||
p.ca_attr.set_payload(p.data)
|
p.ca_attr.set_payload(p.data)
|
||||||
# We cannot set p.data to None directly, so we free storage
|
p.data = p.ca_attr.payload()
|
||||||
free_storage(p.data)
|
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
def backward(self, loss: Tensor) -> None:
|
def backward(self, loss: Tensor) -> None:
|
||||||
loss = self.loss_scale * loss
|
loss = self.loss_scale * loss
|
||||||
self.optim_state = OptimState.SCALED
|
self.optim_state = OptimState.SCALED
|
||||||
if self.model_is_sharded:
|
if self.model_is_sharded:
|
||||||
if dist.get_rank() == 0:
|
|
||||||
print('sharded model backward')
|
|
||||||
self.model.backward(loss)
|
self.model.backward(loss)
|
||||||
if dist.get_rank() == 0:
|
|
||||||
print('sharded model backward done')
|
|
||||||
else:
|
else:
|
||||||
super().backward(loss)
|
super().backward(loss)
|
||||||
|
|
||||||
|
|
|
@ -1,10 +1,11 @@
|
||||||
|
from typing import Optional, Tuple, Union
|
||||||
|
|
||||||
|
import numpy
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.zero.sharded_model._zero3_utils import get_shard
|
from colossalai.zero.sharded_model._zero3_utils import get_shard
|
||||||
from typing import Union, Tuple, Optional
|
|
||||||
import numpy
|
|
||||||
|
|
||||||
|
|
||||||
class ShardedParam(object):
|
class ShardedParam(object):
|
||||||
|
@ -28,6 +29,7 @@ class ShardedParam(object):
|
||||||
self.world_size = dist.get_world_size(self.process_group)
|
self.world_size = dist.get_world_size(self.process_group)
|
||||||
self.local_rank = dist.get_rank(self.process_group)
|
self.local_rank = dist.get_rank(self.process_group)
|
||||||
self.is_sharded = False
|
self.is_sharded = False
|
||||||
|
self.device = device
|
||||||
|
|
||||||
# Hijack the data payload of param
|
# Hijack the data payload of param
|
||||||
if isinstance(other, torch.nn.Parameter):
|
if isinstance(other, torch.nn.Parameter):
|
||||||
|
@ -50,17 +52,19 @@ class ShardedParam(object):
|
||||||
|
|
||||||
self._payload_numel = None
|
self._payload_numel = None
|
||||||
|
|
||||||
def payload(self, target_device: torch.device):
|
def payload(self, target_device: Optional[torch.device] = None):
|
||||||
r"""
|
r"""
|
||||||
get the payload and move it to target device
|
get the payload and move it to target device
|
||||||
"""
|
"""
|
||||||
return self._param_payload.to(target_device)
|
if target_device is not None:
|
||||||
|
return self._param_payload.to(target_device)
|
||||||
|
return self._param_payload
|
||||||
|
|
||||||
def set_payload(self, data: torch.Tensor):
|
def set_payload(self, data: torch.Tensor):
|
||||||
r"""
|
r"""
|
||||||
set payload as data
|
set payload as data
|
||||||
"""
|
"""
|
||||||
assert self._param_payload.numel() == data.numel()
|
assert self._param_payload.shape == data.shape
|
||||||
self._param_payload.copy_(data)
|
self._param_payload.copy_(data)
|
||||||
|
|
||||||
def shard(self):
|
def shard(self):
|
||||||
|
|
|
@ -3,37 +3,21 @@ from functools import partial
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.utils import checkpoint
|
from colossalai.utils import checkpoint
|
||||||
|
|
||||||
LOGGER = get_dist_logger()
|
LOGGER = get_dist_logger()
|
||||||
|
|
||||||
CONFIG = dict(
|
CONFIG = dict(fp16=dict(mode=None,),
|
||||||
fp16=dict(
|
zero=dict(level=3,
|
||||||
mode=None,
|
verbose=False,
|
||||||
),
|
offload_optimizer_config=dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False),
|
||||||
zero=dict(
|
offload_param_config=dict(device='cpu',
|
||||||
level=3,
|
pin_memory=True,
|
||||||
verbose=False,
|
buffer_count=5,
|
||||||
offload_optimizer_config=dict(
|
buffer_size=1e8,
|
||||||
device='cpu',
|
max_in_cpu=1e9)),
|
||||||
pin_memory=True,
|
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
|
||||||
buffer_count=5,
|
|
||||||
fast_init=False
|
|
||||||
),
|
|
||||||
offload_param_config=dict(
|
|
||||||
device='cpu',
|
|
||||||
pin_memory=True,
|
|
||||||
buffer_count=5,
|
|
||||||
buffer_size=1e8,
|
|
||||||
max_in_cpu=1e9
|
|
||||||
)
|
|
||||||
),
|
|
||||||
parallel=dict(
|
|
||||||
pipeline=dict(size=1),
|
|
||||||
tensor=dict(size=1, mode=None)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def checkpoint_wrapper(module, enable=True):
|
def checkpoint_wrapper(module, enable=True):
|
||||||
|
@ -43,6 +27,7 @@ def checkpoint_wrapper(module, enable=True):
|
||||||
|
|
||||||
|
|
||||||
class Net(nn.Module):
|
class Net(nn.Module):
|
||||||
|
|
||||||
def __init__(self, checkpoint=False) -> None:
|
def __init__(self, checkpoint=False) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.fc1 = nn.Linear(5, 5)
|
self.fc1 = nn.Linear(5, 5)
|
||||||
|
@ -50,13 +35,7 @@ class Net(nn.Module):
|
||||||
self.fc3 = nn.Linear(5, 1)
|
self.fc3 = nn.Linear(5, 1)
|
||||||
if checkpoint:
|
if checkpoint:
|
||||||
self.fc1 = checkpoint_wrapper(self.fc1)
|
self.fc1 = checkpoint_wrapper(self.fc1)
|
||||||
self.layers = [
|
self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3]
|
||||||
self.fc1,
|
|
||||||
self.fc2,
|
|
||||||
self.fc1,
|
|
||||||
self.fc2,
|
|
||||||
self.fc3
|
|
||||||
]
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
for layer in self.layers:
|
for layer in self.layers:
|
||||||
|
@ -111,3 +90,17 @@ def check_params_padding(model, zero_model, loose=False):
|
||||||
zero_p = zero_p[:p.size(0)]
|
zero_p = zero_p[:p.size(0)]
|
||||||
assert p.dtype == zero_p.dtype
|
assert p.dtype == zero_p.dtype
|
||||||
assert allclose(p, zero_p, loose=loose)
|
assert allclose(p, zero_p, loose=loose)
|
||||||
|
|
||||||
|
|
||||||
|
def check_sharded_params_padding(model, zero_model, loose=False):
|
||||||
|
rank = dist.get_rank()
|
||||||
|
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
|
||||||
|
zero_p = zero_p.ca_attr.payload(p.device)
|
||||||
|
chunks = torch.flatten(p).chunk(dist.get_world_size())
|
||||||
|
if rank >= len(chunks):
|
||||||
|
continue
|
||||||
|
p = chunks[rank]
|
||||||
|
if zero_p.size(0) > p.size(0):
|
||||||
|
zero_p = zero_p[:p.size(0)]
|
||||||
|
assert p.dtype == zero_p.dtype
|
||||||
|
assert allclose(p, zero_p, loose=loose)
|
||||||
|
|
|
@ -16,19 +16,18 @@ from colossalai.zero.sharded_model import ShardedModelV2
|
||||||
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
||||||
from torch.optim import Adam
|
from torch.optim import Adam
|
||||||
|
|
||||||
from common import (CONFIG, Net, check_grads, check_grads_padding, check_params, check_params_padding)
|
from common import (CONFIG, Net, check_grads, check_grads_padding, check_params, check_sharded_params_padding)
|
||||||
|
|
||||||
|
|
||||||
def run_step(model, optimizer, x, enable_autocast=False):
|
def run_step(model, optimizer, x, enable_autocast=False):
|
||||||
model.train()
|
model.train()
|
||||||
|
optimizer.zero_grad()
|
||||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||||
y = model(x)
|
y = model(x)
|
||||||
loss = y.sum()
|
loss = y.sum()
|
||||||
loss = loss.float()
|
loss = loss.float()
|
||||||
if isinstance(model, ShardedModelV2):
|
if isinstance(model, ShardedModelV2):
|
||||||
optimizer.backward(loss)
|
optimizer.backward(loss)
|
||||||
for p in model.parameters():
|
|
||||||
assert p.ca_attr.is_sharded
|
|
||||||
else:
|
else:
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
@ -51,7 +50,7 @@ def run_dist(rank, world_size, port):
|
||||||
run_step(model, optim, x, False)
|
run_step(model, optim, x, False)
|
||||||
if dist.get_world_size() > 1:
|
if dist.get_world_size() > 1:
|
||||||
check_grads_padding(model, zero_model)
|
check_grads_padding(model, zero_model)
|
||||||
check_params_padding(model, zero_model)
|
check_sharded_params_padding(model, zero_model)
|
||||||
else:
|
else:
|
||||||
check_grads(model, zero_model)
|
check_grads(model, zero_model)
|
||||||
check_params(model, zero_model)
|
check_params(model, zero_model)
|
||||||
|
|
Loading…
Reference in New Issue